留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

行星际磁场时钟角与地球磁层开放磁通的关系

夏之阳 王赤 彭忠 陆全明

夏之阳, 王赤, 彭忠, 陆全明. 行星际磁场时钟角与地球磁层开放磁通的关系[J]. 空间科学学报, 2014, 34(1): 24-28. doi: 10.11728/cjss2014.01.024
引用本文: 夏之阳, 王赤, 彭忠, 陆全明. 行星际磁场时钟角与地球磁层开放磁通的关系[J]. 空间科学学报, 2014, 34(1): 24-28. doi: 10.11728/cjss2014.01.024
Xia Zhiyang, Wang Chi, Peng Zhong, Lu Quanming. Relationship between interplanetary magnetic field clock angle and magnetosphere open magnetic flux[J]. Chinese Journal of Space Science, 2014, 34(1): 24-28. doi: 10.11728/cjss2014.01.024
Citation: Xia Zhiyang, Wang Chi, Peng Zhong, Lu Quanming. Relationship between interplanetary magnetic field clock angle and magnetosphere open magnetic flux[J]. Chinese Journal of Space Science, 2014, 34(1): 24-28. doi: 10.11728/cjss2014.01.024

行星际磁场时钟角与地球磁层开放磁通的关系

doi: 10.11728/cjss2014.01.024
基金项目: 国家自然科学基金项目(41231067,41004073);国家重点基础研究发展计划项目(2012CB825602);科技部国家重点实验室专项经费共同资助
详细信息
    通讯作者:

    夏之阳,E-mail:zyxia@spaceweather.ac.cn

  • 中图分类号: P353

Relationship between interplanetary magnetic field clock angle and magnetosphere open magnetic flux

  • 摘要: 地球磁层开放磁通Fpc是研究磁层动力学过程的重要参数之一,其与日侧和夜侧磁尾的磁场重联具有密切关系. 日侧重联率控制稳定状态下磁层开放磁通的大小,主要受各种太阳风条件的影响. 其中,行星际磁场(IMF)的时钟角是影响日侧重联率的一个重要因素. 通过全球MHD模拟,研究了行星际磁场时钟角θc与地球磁层开放磁通Fpc 之间的关系. 结果表明,开放磁通Fpc随着行星际磁场时钟角 θc逐渐接近180°(纯南向)而逐渐增加,两者之间的关系近似为Fpc∝sin3/2θc/2). 由于表征行星际磁场与地球磁场剪切程度的θc影响日侧重联率,从而控制Fpc,该关系反映了二者之间的物理联系.

     

  • [1] Dungey J W. Interplanetary magnetic fields and the auroral zones[J]. Phys. Rev. Lett., 1961, 6:47-48
    [2] Dungey J W. The Structure of the Exosphere or Adventures in Velocity Space, in Geophysics[M]. New York: Gordon and Breach, 1963: 503
    [3] Siscoe G L, Huang T S. Polar cap inflation and deflation[J]. J. Geophys. Res., 1985, 90:543-547
    [4] Lockwood M, CowleyS W H. Ionospheric convection and the substorm cycle[C]//Proceedings of the International Conference on Substorms (ICS-1), SP-335:99-109. Kiruna, Sweden: ESA, 1992
    [5] Milan S E, Lester M, Cowley S W H, et al. Variations in polar cap area during two substorm cycles[J]. Ann. Geophys., 2003, 21:1121-1140
    [6] Milan S E, Provan G, Hubert B. Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates[J]. J. Geophys. Res., 2007, 112, A01209, doi: 10.1029/2006JA011642
    [7] Milan S E, Boakes P D, Hubert B. Response of the expanding/contracting polar cap to weak and strong solar wind driving: Implications for substorm onset[J]. J. Geophys. Res., 2008, 113, A09215, doi: 10.1029/2008JA013340
    [8] Gordeev E I, Sergeev V A, Pulkkinen T I, Palmroth M. Contribution of magnetotail reconnection to the cross-polar cap electric potential drop[J]. J. Geophys. Res., 2011, 116, A08219, doi: 10.1029/2011JA016609
    [9] Dejong A D, Cai X, Clauer R C, Spann J F. Aurora and open magnetic flux during isolated substorms, sawteeth, and SMC events[J]. Ann. Geophys., 2007, 25:1865-1876
    [10] Huang C S, DeJong A D, Cai X. Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events[J]. J. Geophys. Res., 2009, 114, A07202, doi: 10.1029/2009JA014232
    [11] Kan J R, Lee L C. Energy coupling function and solar wind magnetosphere dynamo[J]. Geophys. Res. Lett., 1979, 6(7):577-580
    [12] Milan S E, Grocott A, Forsyth C, Imber S M, Boakes P D, Hubert B. A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: Open magnetic flux control of substorm intensity[J]. Ann. Geophys., 2009, 27:659-668
    [13] Newell P T, Sotirelis T, Liou K, et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables[J]. J. Geophys. Res., 2007, 112, A01206, doi: 10.1029/2006JA012015.
    [14] Rae I J, Kabin K, Rankin R, et al. Comparison of photometer and global MHD determination of the open-closed field line boundary[J]. J. Geophys. Res., 2004, 109, A01204, doi: 10.1029/2003JA009968
    [15] Rae I J, Kabin K, Lu J, et al. Comparison of the open-closed separatrix in a global magnetospheric simulation with observations: The role of the ring current[J]. J. Geophys. Res., 2010, 115, A08216, doi: 10.1029/2009JA-015068
    [16] Kabin K, Rankin R, Rostoker G, et al. Open-closed field line boundary position: A parametric study using a MHD model[J]. J. Geophys. Res., 2004, 109, A05222, doi: 10.1029/2003JA010168.366
    [17] Powell K G, Roe P L, Linde T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309
    [18] Merkin V G, Goodrich C C. Does the polar cap area saturate[J]. Geophys. Res. Lett., 2007, 34, L09107, doi:10. 1029/2007GL029357
    [19] Hu Y Q, Guo X C, Li G Q, et al. Oscillation of quasi-steady Earth's magnetosphere[J]. Chin. Phys. Lett., 2005, 22(10):2723-2726
    [20] Hu Y Q, Guo X C, Wang C. On the ionospheric and reconnection potentials of the Earth: Results from global MHD simulations[J]. J. Geophys. Res., 2007, 112, A07215, doi: 10.1029/2006JA012145.
    [21] Colella P, Woodward P R. The Piecewise Parabolic Method (PPM) for gas-dynamical simulations[J]. J. Comput. Phys., 1984, 54:174-201
    [22] Hu Y Q, Peng Z, Wang C, Kan J R. Magnetic merging line and reconnection voltage versus IMF clock angle: Results from global MHD simulations[J]. J. Geophys. Res., 2009, 114, A08220, doi: 10.1029/2009JA014118
  • 加载中
计量
  • 文章访问数:  1378
  • HTML全文浏览量:  69
  • PDF下载量:  2250
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-08
  • 修回日期:  2013-07-10
  • 刊出日期:  2014-01-15

目录

    /

    返回文章
    返回