留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球坐标系六片网格下三维定态行星际太阳风模拟

张嫚 周玉芬

张嫚, 周玉芬. 球坐标系六片网格下三维定态行星际太阳风模拟[J]. 空间科学学报, 2014, 34(6): 773-784. doi: 10.11728/cjss2014.06.773
引用本文: 张嫚, 周玉芬. 球坐标系六片网格下三维定态行星际太阳风模拟[J]. 空间科学学报, 2014, 34(6): 773-784. doi: 10.11728/cjss2014.06.773
ZHANG Man, ZHOU Yufen. Three-dimensional Steady State Interplanetary Solar Wind Simulation in Spherical Coordinates with a Six-component Grid[J]. Chinese Journal of Space Science, 2014, 34(6): 773-784. doi: 10.11728/cjss2014.06.773
Citation: ZHANG Man, ZHOU Yufen. Three-dimensional Steady State Interplanetary Solar Wind Simulation in Spherical Coordinates with a Six-component Grid[J]. Chinese Journal of Space Science, 2014, 34(6): 773-784. doi: 10.11728/cjss2014.06.773

球坐标系六片网格下三维定态行星际太阳风模拟

doi: 10.11728/cjss2014.06.773
基金项目: 国家重点基础研究发展计划项目(2012CB825601), 国家自然科学基金项目(41031066, 41231068, 41274192, 41074121, 41204127), 中国科学院知识创新工程重大项目(KZZD-EW-01-4) 和国家重点实验室专项基金项目共同资助
详细信息
    通讯作者:

    周玉芬,yfzhou@spaceweather.ac.cn

  • 中图分类号: P353

Three-dimensional Steady State Interplanetary Solar Wind Simulation in Spherical Coordinates with a Six-component Grid

  • 摘要: 采用二阶MacCormack差分格式, 利用稳态的磁流体(MHD)方程组在球坐标系六片网格下模拟研究了行星际太阳风. 六片网格系统能有效避免极区奇性和网格收敛性. 迭代按径向方向推进求解, 很大程度上减少了计算量, 节约了计算时间. 内边界条件根据太阳与行星际观测确定, 比较测试了5种内边界条件, 模拟给出了1922卡林顿周的背景太阳风结构. 几种内边界条件所得模拟结果与行星际观测基本吻合. 太阳风速度采用McGregor 等的经验公式给出, 磁场由水平电流片(HCCS)模型得到, 密度和温度分别根据动量守恒和气压守恒得到, 研究表明采用这样的边界条件模拟结果最佳.

     

  • [1] Tóth G, Sokolov L V, Gombosi T I, et al. Space weather modeling framework: A new tool for the space science co mmunity[J]. J. Geophys. Res., 2005, 110, A12226, doi: 10.1029/2005JA
    [2] Odstrcil D, Riley P, Zhao X P. Numerical simulation of the 12 May 1997 interplanetary CME event[J]. J. Geophys. Res., 2004, 109, A02116, doi: 10.1029/2003JA010135
    [3] Feng Xueshang, Yang Liping, Xiang Changqing, et al. Va-lidation of the 3D AMR SIP-CESE solar wind model for four Carrington rotations[J]. Solar Phys., 2012, 279:207-229
    [4] Feng Xueshang, Xiang Changqing, Zhong Dingkun. Numerical study of interplanetary solar storms[J]. Sci. China Earth Sci., 2013, 43:912-933
    [5] Feng X S, Zhang S H, Xiang C Q, et al. A hybrid solar wind model of the CESE+HLL method with a yin-yang overset grid and an AMR grid[J]. Astrophys. J., 2011, 734, doi: 10.1088/0004-637X/734/1/50
    [6] Feng X S, Zhong D K, Xiang C Q, et al. GPU-accelerated computing of three-dimensional solar wind bac kground[J]. Sci. China Earth Sci., 2013, 56:1864-1880
    [7] Han S M, Wu S T, Dryer M. A three-dimensional, time-dependent numerical modeling of the super-sonic, super-alfvenic MHD flow[J]. Comp. Fluids, 1988, 16:81-103
    [8] Pizzo V J. Global quasi-steady dynamics of the distant solar wind 1 Origin of north-south flows in the outer heliosphere[J]. J. Geophys. Res., 1994, 99:4173-4183
    [9] Usmanov A V. The global structure of the solar wind in June 1991[J]. Solar Phys., 1993, 148:371-382
    [10] Usmanov A V, Goldstein M L, Besser B P, Fritzer J M. A global MHD solar wind model with WKB Alfve'n waves: Comparison with Ulysses data[J]. J. Geophys. Res., 2000, 105:12675-12695
    [11] Detman Thomas,Smith Zdenka,Dryer Murray, et al. A hybrid heliospheric modeling system: Bac kground solar wind[J]. J. Geophys. Res., 2006, 111, A07102, doi:10. 1029/2005JA011430
    [12] Detman T R, Intriligator D S, Dryer M, et al. The influence of pickup protons, from interstellar neutral hydrogen, on the propagation of interplanetary shocks from the Halloween 2003 solar events to ACE and Ulysses: A 3-D MHD modeling study[J]. J. Geophys. Res., 2011, 116, A03105, doi: 10.1029/2010JA015803
    [13] Hayashi K. An MHD simulation model of time-dependent co-rotating solar wind[J]. J. Geophys. Res., 2012, 117, A08105, doi: 10.1029/2011JA017490
    [14] Odstrcil D. Modeling 3D solar wind structure[J]. Adv. Space Res., 2003, 32:497-506
    [15] Arge C N, Pizzo V J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates[J]. J. Geophys. Res., 2000, 105, doi:10. 1029/1999JA000262
    [16] Riley P, Linker J, Miki'c Z. An empirically-driven global MHD model of the solar corona and inner heliosphere[J]. J. Geophys. Res., 2001, 106(A8):15889-15901
    [17] Wiengarten T, Kleimann J, Fichtner H, et al. MHD simulation of the inner-heliospheric magnetic field[J]. J. Geophys. Res., 2013, 118:29-44
    [18] Holst B Van der, Poedts S, Chané E, et al. Modelling of solar wind, CME Initiation and CME propagation[J]. Space Sci. Rev., 2005, 121:91-104
    [19] Jiang J, Cameron R, Schmitt D, Schüssler M. Modeling the Sun's open magnetic flux and the heliospheric current sheet[J]. Astrophys. J., 2010, 709:301-307
    [20] Zhao X, Hoeksema J T. Predicting the heliospheric magnetic field using the current sheet-source surface model[J]. Adv. Space Res., 2005, 16, doi: 10.1016/0273-1177(95)00331-8
    [21] Lyon J G, Fedder J A, Mobarry C M. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code[J]. J. Atmos. Sol. Terr. Phys., 2004, 66:1333-1350
    [22] Pahud D M. An MHD simulation of the inner heliosphere during Carrington rotations 2060 and 2068: Comparison with MESSENGER and ACE spacecraft observations[J]. J. Atmos. Sol. Terr. Phys., 2012, 83:32-38
    [23] McGregor S L, Hughes W J, Arge C N, et al. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind[J]. J. Geophys. Res., 2011, 116, A03101, doi: 10.1029/2010JA015881
    [24] Wu C C, Murray D, Wu S T, et al. Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1-4 August 2010[J]. J. Geophys. Res., 2011, 116, A12103, doi: 10.1029/2011JA016947
    [25] Fry C D, Sun W, Deehr C S, et al. Improvements to the HAF solar wind model for space weather predictions[J]. J. Geophys. Res., 2001, 106(A10):20985-21001
    [26] Pizzo V J. A Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams[J]. J. Geophys. Res., 1982, 87:4374-4394
    [27] Pizzo V J. A three-dimensional model of corotating streams in the solar wind 2. Hydrodynamic streams[J]. J. Geophys. Res., 1980, 85:727-743
    [28] Usmanov A V. Interplanetary magnetic field structure and solar wind parameters as inferred from solar magnetic field observations and by using a numerical 2-D MHD model[J]. Solar Phys., 1993, 143:345-363
    [29] Usmanov A V. A global 3-D model of the solar wind[J]. Solar Phys., 1993, 146:377-396
    [30] Usmanov A V, Goldstein M L. A tilted-dipole MHD model of the solar corona and solar wind[J]. J. Geophys. Res., 2003, 108(A09), doi: 10.1029/2002JA009777
    [31] Feng Xueshang, Wu S T, Fan Quanlin, Wei Fengsi, Yao Jiusheng. A class of TVD type combined numerical scheme for MHD equations and its application to MHD numerical simulation[J]. Chin. J. Space Sci., 2002, 22(4):200-208. In Chinese (冯学尚, Wu S T, 范全林, 魏奉思, 姚久胜. 一类TVD型组合差分方法及其在磁流体数值计算中的应用[J]. 空间科学学报, 2002, 22(4):200-208)
    [32] Feng X S, Xiang C Q, Zhong D K, Fan Q L. A comparative study on 3D solar wind structure observed by Ulysses and MHD simulation[J]. Chin. Sci. Bull., 2005, 50:820-826
    [33] Feng Xueshang, Yang Liping, Xiang Changqing, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid [J]. Astrophys. J., 2010, 723:300-319
    [34] Feng Xueshang, Jiang Chaowei, Xiang Changqing, et al. A data-driven model for the global coronal evolu-tion[J]. Astrophys. J., 2012, 758, doi: 10.1088/0004-637X/758/1/62
    [35] Feng X S, Yang L P, Xiang C Q, et al. Numerical study of the global corona for CR2055 driven by daily updated synoptic magnetic field[J]. Astron. Soc. Pacific Confer. Ser., 2012, 459:202
    [36] Matsumoto H, Omura Y. Particle simulation of electromagnetic waves and its application to space plamas[J]. Comput. Simul. Space Plasm., 1985, 1:43-102
    [37] Owens M J, Spence H E, Mcgregor S, et al. Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations[J]. Space Weather, 2008, 6, S08001, doi:10. 1029/2007SW000380
    [38] Hayashi K, Masayoshi K, Munetoshi T, et al. MHD tomography using interplanetary scintillation measurement[J]. J. Geophys. Res., 2003, 108, A03102, doi:10. 1029/2002JA009567
    [39] Hayashi K. Magnetohydrodynamic simulations of the solar corona and solar wind using a boundary treatment to limit solar wind mass flux[J]. Astrophys. J., 2005, 161:480-494
    [40] Zhao Xuepu, Hoeksema J Todd. A coronal magnetic field model with horizontal volume and sheet currents[J]. Solar Phys., 1994, 151:91-105
    [41] Odstrcil D, Pizzo V J. Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 1. CME launched within the streamer belt[J]. J. Geophys. Res., 1999, 104(A1):483-492
  • 加载中
计量
  • 文章访问数:  1541
  • HTML全文浏览量:  55
  • PDF下载量:  1122
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-04
  • 修回日期:  2014-03-07
  • 刊出日期:  2014-11-15

目录

    /

    返回文章
    返回