留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红精灵发光光谱的数值模拟研究

江芳 黄朝艳 张华龙 李小银 王咏梅

江芳, 黄朝艳, 张华龙, 李小银, 王咏梅. 红精灵发光光谱的数值模拟研究[J]. 空间科学学报, 2015, 35(3): 315-323. doi: 10.11728/cjss2015.03.315
引用本文: 江芳, 黄朝艳, 张华龙, 李小银, 王咏梅. 红精灵发光光谱的数值模拟研究[J]. 空间科学学报, 2015, 35(3): 315-323. doi: 10.11728/cjss2015.03.315
Jiang Fang, Huang Chaoyan, Zhang Hualong, Li Xiaoyin, Wang Yongmei. Study on Spectrum of Sprite Emissive Using Numerical Simulation[J]. Chinese Journal of Space Science, 2015, 35(3): 315-323. doi: 10.11728/cjss2015.03.315
Citation: Jiang Fang, Huang Chaoyan, Zhang Hualong, Li Xiaoyin, Wang Yongmei. Study on Spectrum of Sprite Emissive Using Numerical Simulation[J]. Chinese Journal of Space Science, 2015, 35(3): 315-323. doi: 10.11728/cjss2015.03.315

红精灵发光光谱的数值模拟研究

doi: 10.11728/cjss2015.03.315
基金项目: 国家自然科学基金项目(41005013,41204116,41231066)和国家重点基础研究发展计划项目(2011CB811404)共同资助
详细信息
  • 中图分类号: P352

Study on Spectrum of Sprite Emissive Using Numerical Simulation

  • 摘要: 红精灵是发生在雷暴层云顶的一类大气瞬态发光现象, 是能量由对流层耦合到中高层大气的直接证据. 其发光光谱研究是了解整个事件对中高层大气能量注入的重要手段, 有助于认识事件发生区域的大气电离度及事件过程的能量电子分布, 进一步为研究红精灵的产生机制提供重要信息, 同时为大气辐射背景资料研究提供重要依据. 本文利用Boltzmann方程求解了电场作用下弱电离气体中电子能量分布的时变函数, 以此为基础, 模拟计算了红精灵各典型发射带的光谱强度. 模拟计算结果表明, 约化电场E/N越强, 电子获得的能量就越多, 高能电子也就越多, 致使撞击中性大气产生的辐射光强就越强; 模拟显示红精灵光辐射谱分布从远紫外直至近红外.

     

  • [1] Franz R C, Nemzek R J, Winckler J R. Television image of a large upward electric discharge above a thunderstorm system[J]. Science, 1990, 249:48-51
    [2] Sentman D D, Wescott E M, Osborne D L, et al. Preliminary results from Sprites94 aircraft campaign: 1. Red Sprites[J]. Geophys. Res. Lett., 1995, 22:1205-1208
    [3] Pasko V P, Inan U S, Bell T F. Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields[J]. Geophys. Res. Lett., 1996, 23:649-652
    [4] Koemtzo Poulos C R, Eeonomou D J, Riehard P. Hydrogen dissociation in a microwave discharges for diamond deposition[J]. Diam. Relat. Mater., 1993, 2(1):25-35
    [5] Cartwright D C, Pendleton Jr W R, Weaver L D. Auroral emission of the N2+ Meinel bands[J]. J. Geophys. Res., 1975, 80:651-654
    [6] Cartwright D C, Trajmar S, Chutjian A, et al. Electron impact excitation of the electronic states of N2: II. Integral cross sections at incident energies from 10 to 50eV[J]. Phys. Rev. A, 1977, 16:1041-1051
    [7] Borst W L, Zipf E C. Cross section for electron-impact excitation of the (0, 0) first negative band of N2+ from threshold to 3keV[J]. Phys. Rev. A, 1970, 1:834-840
    [8] Van Zyl B, Pendleton Jr W. N2+(X), N2+(A), and N2+(B) production in e-+N2 collisions[J]. J. Geophys. Res., 1995, 100:23755-23762
    [9] Phelps A V. Cross sections and swarm coefficients for nitrogen ions and neutrals in N2 and argon ions and neutrals in Ar for energies from 0.1eV to 10keV[J]. J. Phys. Chem. Ref. Data., 1991, 20(3):557-573
    [10] Pasko V P, Inan U S, Taranenko Y N, et al. Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud fields[J]. Geophys. Res. Lett., 1995, 22:365-368
    [11] Gilmore F R, Laher R R, Espy P J. Franck-Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems[J]. J. Phys. Chem. Ref. Data, 1992, 21:1005-1107
  • 加载中
计量
  • 文章访问数:  1265
  • HTML全文浏览量:  54
  • PDF下载量:  19296
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-02
  • 修回日期:  2014-10-17
  • 刊出日期:  2015-05-15

目录

    /

    返回文章
    返回