留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VLF波渗透电离层传播计算研究进展

廖力 赵庶凡 张学民

廖力, 赵庶凡, 张学民. VLF波渗透电离层传播计算研究进展[J]. 空间科学学报, 2017, 37(3): 277-283. doi: 10.11728/cjss2017.03.277
引用本文: 廖力, 赵庶凡, 张学民. VLF波渗透电离层传播计算研究进展[J]. 空间科学学报, 2017, 37(3): 277-283. doi: 10.11728/cjss2017.03.277
LIAO Li, ZHAO Shufan, ZHANG Xuemin. Advances in the Study of Transionospheric Propagation of VLF Waves[J]. Chinese Journal of Space Science, 2017, 37(3): 277-283. doi: 10.11728/cjss2017.03.277
Citation: LIAO Li, ZHAO Shufan, ZHANG Xuemin. Advances in the Study of Transionospheric Propagation of VLF Waves[J]. Chinese Journal of Space Science, 2017, 37(3): 277-283. doi: 10.11728/cjss2017.03.277

VLF波渗透电离层传播计算研究进展

doi: 10.11728/cjss2017.03.277
基金项目: 

国家国际科技合作对俄科技合作专项(2014DFR21280),ISSI-Beijing项目和中国地震局地球物理研究所基本科研业务费(DQJB16B11)共同资助

详细信息
    作者简介:

    廖力,liaoli@cea-igp.ac.cn;赵庶凡,zsf2008bj@126.com

  • 中图分类号: P352

Advances in the Study of Transionospheric Propagation of VLF Waves

  • 摘要: 3~30kHz的甚低频(Very-Low-Frequency,VLF)电磁波对近地空间的高能粒子分布具有非常重要的作用.闪电和地面VLF通信台等VLF波主要辐射源产生的VLF波能够渗透进入电离层,并以哨声波模式继续传播至磁层与高能粒子发生相互作用.本文从VLF电磁波渗透电离层传播计算方法的发展、计算模型验证以及模型在电离层现象研究中的应用等方面对VLF波渗透进电离层之后的传播计算的研究进展进行综述,并对未来研究进行初步展望.

     

  • [1] CHRISSAN D A, FRASER-SMITH A C. Seasonal variations of globally measured ELF/VLF radio noise[J]. Radio Sci., 1996, 31(5):1141-1152
    [2] UMAN M A, HORNSTEIN J. The lightening discharge[J]. Phys. Today, 1989, 42(5):75-76
    [3] WATT T M. Obtaining local values of plasma scale height with the Alouette 1 topside sounder[J]. J. Geophys. Res., 1967, 72(15):3843-3853
    [4] SWANSON E R, KUGEL C P. VLF timing: conventional and modern techniques including omega[J]. Proc. IEEE, 1972, 60(5):540-551
    [5] DAVIES K. Ionospheric Radio[M]. London: The Institution of Electrical Engineering and Technology, 1990
    [6] STOREY L R O. An investigation of whistling atmosphe-rics[J]. Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci., 1953, 246(908):113-141
    [7] HELLIWELL R A. Whistlers and Related Ionospheric Phenomena[M]. California: Stanford University Press, 1965
    [8] XU Jisheng, MO Qixu. Transmission characteristics of low latitude whistlers through the lower ionosphere——full wave solution[J]. Acta Geophys. Sin., 1989, 32(3):256-261 (徐继生, 莫启绪. 低纬哨声通过低电离层传播的透射特征elax——elax全波解[J]. 地球物理学报, 1989, 32(3):256-261)
    [9] NAGANO I, MAMBO M, HUTATSUISHI G. Numerical calculation of electromagnetic waves in an anisotropic multilayered medium[J]. Radio Sci., 1975, 10(6):611-617
    [10] HAYAKAWA M, TANAKA Y. On the propagation of low-latitude whistlers[J]. Rev. Geophys., 1978, 16(1):111-123
    [11] XU Jisheng, BAO Zongti, LIANG Baixian. A method of 3-D ray tracing of whistler-mode waves using the IGRF model[J]. Acta Geophys. Sin., 1985, 28(5):443-451 (徐继生, 保宗悌, 梁百先. 国际地磁参考场中哨声模波的三维射线跟踪算法[J]. 地球物理学报, 1985, 28(5):443-451)
    [12] XU Jisheng, TIAN Mao, MA Shuying, et al. Multi-stationed wide band direction finding measurements for whistlers at geomagnetic latitudes below 20° in China and some early results[J]. Acta Geophys. Sin., 1989, 32(2): 125-134 (徐继生, 田茂, 马淑英, 等. 磁纬20°以下地区哨声多台宽带定向观测及其初步结果[J]. 地球物理学报, 1989, 32(2):125-134)
    [13] ONDOH T, KOTAKI M, MURAKAMI T, et al. Propagation characteristics of low-latitude whistlers[J]. J. Geophys. Res., 1979, 84(A5):2097-2104
    [14] WU Xiangyang, BAO Zongti, NAGANO I, et al. Numerical simulation of the whistler penetration process through the lower ionosphere at very-low-latitude[J]. Acta Geophys. Sin., 1996, 39(5):588-600 (吴向阳, 保宗悌, 长野勇, 等. 甚低纬哨声低电离层透射过程的数值模拟[J]. 地球物理学报, 1996, 39(5):588-600)
    [15] KENNEL C F, PETSCHEK H E. Limit on stably trapped particle fluxes[J]. J. Geophys. Res., 1966, 71(1):1-28
    [16] LYONS L R, THORNE R M, KENNEL C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere[J]. J. Geophys. Res., 1972, 77:3455-3474
    [17] IMHOF W L, REAGAN J B, VOSS H D, et al. The modulated precipitation of radiation belt electrons by controlled signals from VLF transmitters[J]. Geophys. Res. Lett., 1983, 10(8):615-618
    [18] INAN U S, CARPENTER D L. Lightning-induced electron precipitation events observed at L~2.4 as phase and amplitude perturbations on subionospheric VLF sig-nals[J]. J. Geophys. Res., 1987, 92(A4):3293-3303
    [19] VAMPOLA A L. VLF transmission induced slot electron precipitation[J]. Geophys. Res. Lett., 1977, 4(12):569-572
    [20] ABEL B, THORNE R M. Electron scattering loss in Earth's inner magnetosphere: 2. Sensitivity to model parameters[J]. J. Geophys. Res., 1998, 103(A2):2397-2408
    [21] BARR R, STUBBE P. ELF radiation from the Tromsø"super heater" facility[J]. Geophys. Res. Lett., 1991, 18(6):1035-1038
    [22] PLATINO M, INAN U S, BELL T F, et al. DEMETER observations of ELF waves injected with the HAARP HF transmitter[J]. Geophys. Res. Lett., 2006, 33(16):L16101
    [23] WANG Feng, ZHAO Zhengyu, ZHANG Yuannong. Numerical modeling of ionospheric current artificial mo-dulation at low latitude[J]. Chin. J. Geophys., 2009, 52(4):887-894 (汪枫, 赵正予, 张援农. 低纬地区电离层电流的人工调制数值模拟[J]. 地球物理学报, 2009, 52(4):887-894)
    [24] INAN U S, CHANG H C, HELLIWELL R A. Electron precipitation zones around major ground-based VLF signal sources[J]. J. Geophys. Res., 1984, 89(A5):2891-2906
    [25] ABEL B, THORNE R M. Electron scattering loss in Earth's inner magnetosphere: 1. Dominant physical processes[J]. J. Geophys. Res., 1998, 103(A2):2385-2396
    [26] BORTNIK J, INAN U S, BELL T F. L dependence of energetic electron precipitation driven by magnetospherically reflecting whistler waves[J]. J. Geophys. Res., 2002, 107(A8):SMP 1-1-SMP 1-13. DOI: 10.1029/2001JA000303
    [27] STARKS M J, QUINN R A, GINET G P, et al. Illumination of the plasmasphere by terrestrial very low frequency transmitters: model validation[J]. J. Geophys. Res., 2008, 113:A09320. DOI: 10.1029/2008JA013112
    [28] GOLDEN D I, SPASOJEVIC M, FOUST F R, et al. Role of the plasmapause in dictating the ground accessibility of ELF/VLF chorus[J]. J. Geophys. Res., 2010, 115:A11211. DOI: 10.1029/2010JA015955
    [29] CRARY J H. The Effect of the Earth-Ionosphere Waveguide on Whistlers[R]. Stanford, California: Stanford Electron Laboratory, Stanford University, 1961
    [30] YAGITANI S, NAGANO I, MIYAMURA K, et al. Full wave calculation of ELF/VLF propagation from a dipole source located in the lower ionosphere[J]. Radio Sci., 1994, 29(1):39-54
    [31] LEHTINEN N G, INAN U S. Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet[J]. J. Geophys. Res., 2008, 113:A06301
    [32] WAIT J R, CULLEN A L, FOCK V A, et al. Electromagnetic Waves in Stratified Media[M]. Oxford: Pergamon Press, 1970
    [33] BUDDEN K G. The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere[M]. Cambridge: Cambridge University Press, 1985
    [34] NYGRÉN T. A method of full wave analysis with improved stability[J]. Planet. Space Sci., 1982, 30(4):427-430
    [35] CHO M, RYCROFT M J. Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere[J]. J. Atmos. Sol.-Terr. Phys., 1998, 60(7/8/9):871-888
    [36] CUMMER S A. Modeling electromagnetic propagation in the Earth-ionosphere waveguide[J]. IEEE Trans. Antenn. Propag., 2000, 48(9):1420-1429
    [37] HU W, CUMMER S A. An FDTD model for low and high altitude lightning-generated EM fields[J]. IEEE Trans. Antenn. Propag., 2006, 54(5):1513-1522
    [38] SIMPSON J J, TAFLOVE A. Three-dimensional FDTD modeling of impulsive ELF propagation about the earth-sphere[J]. IEEE Trans. Antenn. Propag., 2004, 52(2):443-451
    [39] YANG Y, HU S M, CHEN R S. A combination of FDTD and least-squares support vector machines for analysis of microwave integrated circuits[J]. Microw. Opt. Technol. Lett., 2005, 44(3):296-299
    [40] LEHTINEN N G, INAN U S. Full-wave modeling of transionospheric propagation of VLF waves[J]. Geophys. Res. Lett., 2009, 36:L03104. DOI: 10.1029/2008GL036535
    [41] COHEN M B, LEHTINEN N G, INAN U S. Models of ionospheric VLF absorption of powerful ground based transmitters[J]. Geophys. Res. Lett., 2012, 39:L24101. DOI: 10.1029/2012GL054437
    [42] NAGANO I, ROSEN P A, YAGITANI S, et al. Full wave analysis of the Australian Omega signal observed by the Akebono satellite[J]. IEICE Trans. Commun., 1993, E76-B(12):1571-1578
    [43] TAO X, BORTNIK J, FRIEDRICH M. Variance of transionospheric VLF wave power absorption[J]. J. Geophys. Res., 2010, 115:A07303. DOI: 10.1029/2009JA015115
    [44] FOUST F R, INAN U S, BELL T, et al. Quasi-ele-ctrostatic whistler mode wave excitation by linear sca-tte-ring of EM whistler mode waves from magnetic field-aligned density irregularities[J]. J. Geophys. Res., 2010, 115:A11310. DOI: 10.1029/2010JA015850
    [45] SHAO X, ELIASSON B, SHARMA A S, et al. Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere[J]. J. Geophys. Res., 2012, 117:A04311. DOI: 10.1029/2011JA017339
    [46] BELL T F, INAN U S, PIDDYACHIY D, et al. Effects of plasma density irregularities on the pitch angle scattering of radiation belt electrons by signals from ground based VLF transmitters[J]. Geophys. Res. Lett., 2008, 35:L19103. DOI: 10.1029/2008GL034834
    [47] COHEN M B, INAN U S. Terrestrial VLF transmitter injection into the magnetosphere[J]. J. Geophys. Res., 2012, 117:A08
  • 加载中
计量
  • 文章访问数:  1269
  • HTML全文浏览量:  49
  • PDF下载量:  1178
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-26
  • 修回日期:  2016-12-20
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回