留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dark Matter Particle Explorer and Its First Results

CHANG Jin

CHANG Jin. Dark Matter Particle Explorer and Its First Results[J]. 空间科学学报, 2018, 38(5): 610-614. doi: 10.11728/cjss2018.05.610
引用本文: CHANG Jin. Dark Matter Particle Explorer and Its First Results[J]. 空间科学学报, 2018, 38(5): 610-614. doi: 10.11728/cjss2018.05.610
CHANG Jin. Dark Matter Particle Explorer and Its First Results[J]. Chinese Journal of Space Science, 2018, 38(5): 610-614. doi: 10.11728/cjss2018.05.610
Citation: CHANG Jin. Dark Matter Particle Explorer and Its First Results[J]. Chinese Journal of Space Science, 2018, 38(5): 610-614. doi: 10.11728/cjss2018.05.610

Dark Matter Particle Explorer and Its First Results

doi: 10.11728/cjss2018.05.610
基金项目: 

Supported in part by the National Key Research and Development Program of China (2016YFA0400200) and the National Natural Science Foundation of China (U1738206)

详细信息
    作者简介:

    CHANG Jin,chang@pmo.ac.cn

Dark Matter Particle Explorer and Its First Results

Funds: 

Supported in part by the National Key Research and Development Program of China (2016YFA0400200) and the National Natural Science Foundation of China (U1738206)

More Information
    Author Bio:

    CHANG Jin,chang@pmo.ac.cn

  • 摘要: The Dark Matter Particle Explorer (DAMPE) is China's first astronomical satellite dedicated to the indirect detection of dark matter particles and the study of high-energy astrophysics. It can measure high-energy electrons and gamma-rays up to 10 TeV with unprecedentedly high energy resolution and low background. Cosmic ray nuclei up to 100 TeV can also be measured. DAMPE was launched on December 17, 2015, and has been operating smoothly in space for more than two years since then. The first results about the precise measurements of the electron plus positron spectrum between 25 GeV and 4.6 TeV have been reported.

     

  • [1] PLANCK collaboration. Planck 2015 results. XⅢ. Cosmological parameters[J]. Astron. Astrophys., 2016, 594(A):13
    [2] JUNGMAN G, KAMIONKOWSKI M, GRIEST K. Supersymmetric dark matter[J]. Phys. Rept., 1996, 267:195-373
    [3] BERTONE G, HOOPER D, SILK J. Particle dark matter:evidence, candidates and constraints[J]. Phys. Rept., 2005, 405:279-390
    [4] BI X J, YIN P F, YUAN Q. Status of dark matter detection[J]. Front. Phys., 2013, 8:794-827
    [5] PAMELA collaboration. An anomalous positron abundance in cosmic rays with energies 1.5~100 GeV[J]. Nature, 2009, 458:607-609
    [6] Fermi-LAT collaboration. Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope[J]. Phys. Rev. Lett., 2012, 108:011103
    [7] AMS collaboration. First result from the Alpha Magnetic Spectrometer on the International Space Station:precision measurement of the positron fraction in primary cosmic rays of 0.5~350 GeV[J]. Phys. Rev. Lett., 2013, 110:141102
    [8] ATIC collaboration. An excess of cosmic ray electrons at energies of 300~800 GeV[J]. Nature, 2008, 456:362-365
    [9] Fermi-LAT collaboration. Measurement of the cosmic ray e++ e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope[J]. Phys. Rev. Lett., 2009, 102:181101
    [10] AMS collaboration. High statistics measurement of the positron fraction in primary cosmic rays of 0.5~500 GeV with the Alpha Magnetic Spectrometer on the International Space Station[J]. Phys. Rev. Lett., 2014, 113:121101
    [11] SHEN C S. Pulsars and very high-energy cosmic-ray electrons[J]. Astrophys. J. Lett., 1970, 162(L):181-186
    [12] HOOPER D, BLASI P, DARIO SERPICO P. Pulsars as the sources of high energy cosmic ray positrons[J]. J. Cosmol. Astropart. Phys., 2009, 1:25
    [13] YUKSEL H, KISTLER M D, STANEV T. TeV gamma rays from Geminga and the origin of the GeV positron excess[J]. Phys. Rev. Lett., 2009, 103:051101
    [14] BERGSTROM L, BRINGMANN T, EDSJO J. New positron spectral features from supersymmetric dark matter-a way to explain the PAMELA data[J]. Phys. Rev.:D, 2008, 78:103520
    [15] CIRELLI M, KADASTIK M, RAIDAL M, et al. Modelindependent implications of the e+, e-, anti-proton cosmic ray spectra on properties of dark matter[J]. Nucl. Phys. B, 2009, 813:1
    [16] YIN P F, YUAN Q, LIU J, et al. PAMELA data and leptonically decaying dark matter[J]. Phys. Rev. D, 2009, 79:023512
    [17] HAWC collaboration. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth[J]. Science, 2017, 358:911
    [18] HOOPER D,GOODENOUGH L. Dark matter annihilation in the galactic centeras seen by the Fermi Gamma Ray Space Telescope[J]. Phys. Lett. B, 2011, 697:412-428
    [19] CUI M Y, YUAN Q, SMING TSAI Y L, et al. Possible dark matter annihilation signal in the AMS-02 antiproton data[J]. Phys. Rev. Lett., 2017, 118:191101
    [20] CUOCO A, KRAMER M, KORSMEIER M. Novel dark matter constraints from antiprotons in light of AMS-02[J]. Phys. Rev. Lett., 2017, 118:191102
    [21] CHANG J. Dark matter particle explorer:the first Chinese cosmic ray and hard γ-ray detector in space[J]. Chin. J. Space Sci., 2014, 34:550-557
    [22] DAMPE collaboration. Cosmic-ray electron + positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope[J]. Astropart. Phys., 2017, 95:6
    [23] YU Yuhong, SUN Zhiyu, SU Hong, et al. The plastic scintillator detector for DAMPE[J]. Astropart. Phys., 2017, 94:1-10
    [24] AZZARELLO P, AMBROSI G, ASFANDIYAROV R, et al. The DAMPE silicon-tungsten tracker[J]. Nucl. Instrum. Meth. Phys. Res.:A, 2016, 831:378-384
    [25] ZHANG Zhiyong, ZHANG Yunlong, DONG Jianing,et al. Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE[J]. Nucl. Instrum. Meth. Phys. Res.:A, 2015, 780:21-26
    [26] HE M, MAO T, CHANG J, et al. GEANT4 Simulation of Neutron Detector DAMPE[J]. Acta Astron. Sin., 2016, 57:1-8
    [27] CHANG J. On the detection and identification of cosmic gamma-rays in a cosmic ray detector[J]. BMJ, 1999, 1(2):136-137
    [28] CHANG J, ADAMS J H, AHN H S, et al. Resolving electrons from protons in ATIC[J]. Adv. Space Res., 2008, 42:431-436
    [29] DAMPE collaboration. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons[J]. Nature, 2017, 552:63-66
    [30] YUE Chuan, ZANG Jingjing, DONG Tiekuang, et al. A parameterized energy correction method for electromagnetic showers in BGO-ECAL of DAMPE[J]. Nucl. Instrum. Meth. Phys. Res.:A, 2017, 856:11
    [31] Fermi LAT Collaboration. Cosmic-ray electron+ positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope[J]. Phys. Rev.:D, 2017, 95:082007
    [32] HESS Collaboration. The energy spectrum of cosmic-ray electrons at TeV energies[J]. Phys. Rev. Lett., 2008, 101:261104
    [33] HESS Collaboration. Probing the ATIC peak in the cosmic-ray electron spectrum with HESS[J]. Astron. Astrophys., 2009, 508:561-564
  • 加载中
计量
  • 文章访问数:  891
  • HTML全文浏览量:  79
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-26
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回