留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冕洞特征参数与地磁暴强度及发生时间统计

卜萱 罗冰显 刘四清 龚建村 曹勇 王宏

卜萱, 罗冰显, 刘四清, 龚建村, 曹勇, 王宏. 冕洞特征参数与地磁暴强度及发生时间统计[J]. 空间科学学报, 2020, 40(1): 9-19. doi: 10.11728/cjss2020.01.009
引用本文: 卜萱, 罗冰显, 刘四清, 龚建村, 曹勇, 王宏. 冕洞特征参数与地磁暴强度及发生时间统计[J]. 空间科学学报, 2020, 40(1): 9-19. doi: 10.11728/cjss2020.01.009
BU Xuan, LUO Bingxian, LIU Siqing, GONG Jiancun, CAO Yong, WANG Hong. Statistical Study between Characteristic Parameters of Coronal Holes and Intensity/Time of Geomagnetic Storms[J]. Chinese Journal of Space Science, 2020, 40(1): 9-19. doi: 10.11728/cjss2020.01.009
Citation: BU Xuan, LUO Bingxian, LIU Siqing, GONG Jiancun, CAO Yong, WANG Hong. Statistical Study between Characteristic Parameters of Coronal Holes and Intensity/Time of Geomagnetic Storms[J]. Chinese Journal of Space Science, 2020, 40(1): 9-19. doi: 10.11728/cjss2020.01.009

冕洞特征参数与地磁暴强度及发生时间统计

doi: 10.11728/cjss2020.01.009
基金项目: 

国家自然科学基金项目(41474164),北京市科技重大专项(Z181100002918004)和深圳科技计划项目(JCYJ20160817172025986)共同资助

详细信息
    作者简介:

    卜萱,E-mail:buxuanshixian@163.com

  • 中图分类号: P353

Statistical Study between Characteristic Parameters of Coronal Holes and Intensity/Time of Geomagnetic Storms

  • 摘要: 地磁暴是空间天气预报的重要对象.在太阳活动周下降年和低年,冕洞发出的高速流经过三天左右行星际传输到达地球并引发的地磁暴占主导地位.目前地磁暴的预报通常依赖于1AU处卫星就位监测的太阳风参数,预报提前量只有1h左右.为了增加地磁暴预报提前量,需要从高速流和地磁暴的源头即太阳出发,建立冕洞特征参数与地磁暴的定量关系.分析了2010年5月到2016年12月的152个冕洞-地磁暴事件,利用SDO/AIA太阳极紫外图像提取了两类冕洞特征参数,分析了其与地磁暴期间ap,DstAE三种地磁指数的统计关系,给出冕洞特征参数与地磁暴强度以及发生时间的统计特征,为基于冕洞成像观测提前1~3天预报地磁暴提供了依据.

     

  • [1] LUCAS G M, LOVE J J, KELBERT A. Calculation of voltages in electric power transmission lines during historic geomagnetic storms:an investigation using realistic earth impedances[J]. Space Weather, 2018, 16(2):185-195
    [2] ASTAFYEVA E, YASYUKEVICH Y, MAKSIKOV A, et al. Geomagnetic storms, super-storms and their impacts on GPS-based navigation systems[J]. Space Weather, 2014, 12(7):508-525
    [3] ROSTOKER G. Geomagnetic indices[J]. Rev. Geophys. Space Phys., 1972, 10(4).DOI: 10.1029/RG010i004p00935
    [4] MENVIELLE M, BERTHELIER A. The K-Derived planetary indexes-description and availability[J]. Rev. Geophys., 1991, 29(3):415-432
    [5] DAVIS T N, SUGIURA M. Auroral eletrojet activity index AE and its universal time variations[J]. J. Geophys. Res., 1966, 71:785-803
    [6] BOBERG F, WINTOFT P, LUNDSTEDT H. Real time Kp predictions from solar wind data using neural networks[J]. Phys. Chem. Earth:Sol. Terr. Planet. Sci., 2000, 25(4):275-280
    [7] JOHNSON J R, WING S. A solar cycle dependence of nonlinearity in magnetospheric activity[J]. J. Geophys. Res.:Space Phys., 2005, 110(A4).DOI: 10.1029/2004JA010638
    [8] BALA R, REIFF P. Improvements in short-term forecasting of geomagnetic activity[J]. Space Weather:Int. J. Res. Appl., 2012, 10(6).DOI: 10.1029/2012SW000779
    [9] LUO B, LIU S, GONG J. Two empirical models for short-term forecast of Kp[J]. Space Weather, 2017, 15(3):503-516
    [10] SHARIFIE J, LUCAS C, ARAABI B N. Locally linear neurofuzzy modeling and prediction of geomagnetic disturbances based on solar wind conditions[J]. Space Weather:Int. J. Res. Appl., 2006, 4(6).DOI: 10.1029/2005SW000209
    [11] AMATA E, PALLOCCHIA G, CONSOLINI G, et al. Comparison between three algorithms for Dst predictions over the 2003-2005 period[J]. J. Atmos. Sol.:Terr. Phys., 2008, 70(2-4):496-502
    [12] BOYNTON R J, BALIKBIN M A, BILLINGS S A, et al. Data derived NARMAX Dst model[J]. Ann. Geophys., 2011, 29(6):965-971
    [13] BOYNTON R J, BALIKBIN M A, BILLINGS S A, et al. Application of nonlinear autoregressive moving average exogenous input models to geospace:advances in understanding and space weather forecasts[J]. Ann. Geophys., 2013, 31(9):1579-1589
    [14] CASWELL J M. A nonlinear autoregressive approach to statistical prediction of disturbance storm time geomagnetic fluctuations using solar data[J]. J. Signal Inf. Process., 2014, 5(2):42-53
    [15] REVALLO M, VALACH F, HEJDA P, et al. A neural network Dst index model driven by input time histories of the solar wind-magnetosphere interaction[J]. J. Atmos. Sol.:Terr. Phys., 2014, 110:9-14
    [16] 07[J]. J. Atmos. Sol.:Terr. Phys., 2015, 125:10-20
    [17] TEMERIN M, LI X. A new model for the prediction of Dst on the basis of the solar wind[J]. Geophys. Res., 2002, 107(A12).DOI: 10.1029/2001JA007532
    [18] TEMERIN M, LI X. Dst model for 1995-2002[J]. Geophys. Res., 2006, 111(A4).DOI: 10.1029/2005JA011257
    [19] GLEISNER H, LUNDSTEDT H. Response of the auroral electrojets to the solar wind modeled with neural networks[J]. J. Geophys. Res.:Space Phys., 1997, 102(A7):14269-14278
    [20] GAVRISHCHAKA V V, GANGULI S B. Optimization of the neural-network geomagnetic model for forecasting large-amplitude substorm events[J]. J. Geophys. Res.:Space Phys., 2001, 106(A4):6247-6257
    [21] WEIGEL R S, KLIMAS A J, VASSILIADIS D. Solar wind coupling to and predictability of ground magnetic fields and their time derivatives[J]. J. Geophys. Res.:Space Phys., 2003, 108(A7).DOI: 10.1029/2002ja009627
    [22] CHEN J, SHARMA A S. Modeling and prediction of the magnetospheric dynamics during intense geospace storms[J]. J. Geophys. Res:Space Phys., 2006, 111(A4). DOI: 10.1029/2005JA011359
    [23] LI X L, OH K S, TEMERIN M. Prediction of the AL index using solar wind parameters[J]. J. Geophys. Res.:Space Phys., 2007, 112(A6).DOI: 10.1029/2006JA011918
    [24] LUO B X, LI X L, TEMERIN M, et al. Prediction of the AU, AL, and AE indices using solar wind parameters[J]. J. Geophys. Res.:Space Phys., 2013, 118(12):7683-7694
    [25] AKASOFU S I, WATANABE H, SAITO T. A new morphology of solar activity and recurrent geomagnetic disturbances:the late-declining phase of the sunspot cycle[J]. Space Sci. Rev., 2005, 120(1/2):27-65
    [26] TSURUTANI B T, GONZALEZ W D, GONZALEZ A L C, et al. Corotating solar wind streams and recurrent geomagnetic activity:a review[J]. J. Geophys. Res., 2006, 111(A7).DOI: 10.1029/2005ja011273
    [27] GOSLING J T, ASBRIDGE J R, BAME S J, et al. Solar wind stream interfaces[J]. J. Geophys. Res., 1978, 83(A4).DOI: 10.1029/JA083iA04p01401
    [28] BURLAGA L F. Interplanetary streams and their interaction with the Earth[J]. Space Sci. Rev., 1975, 17(2-4):327-352
    [29] VRŠNAK B, TEMMER M, VERONIG A M. Coronal holes and solar wind high-speed streams:II. Forecasting the geomagnetic effects[J]. Sol. Phys., 2007, 240(2):331-346
    [30] VERBANAC G, VRŠNAK B, VERONIG A, et al. Equatorial coronal holes, Solar Wind high-speed streams, and their geoeffectiveness[J]. Astron. Astrophys., 2011, 526(A20).DOI: 10.1051/0004-6361/201014617
    [31] LEMEN J R, TITLE A M, AKIN D J, et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO)[J]. Sol. Phys., 2011, 275(1/2):17-40
    [32] STONE E C, FRANDSEN A M, MEWALDT R A, et al. The advanced composition explorer[J]. Space Sci. Rev., 1998, 86(1/2/3/4):1-22
    [33] ROTTER T, VERONIG A M, TEMMER M, et al. Relation between coronal hole areas on the Sun and the Solar Wind Parameters at 1AU[J]. Sol. Phys., 2012, 281(2):793-813
    [34] LUO B, ZHONG Q, LIU S, et al. A new forecasting index for solar wind velocity based on EIT 284Å observations[J]. Sol. Phys., 2008, 250(1):159-170
    [35] GUPTA V, BADRUDDIN. High-speed Solar Wind Streams during 1996-2007:sources, statistical distribution and plasma/field properties[J]. Sol. Phys., 2010, 264(1):165-188
    [36] GOSLING J T. Corotating and transient solar wind flows in three dimensions[J]. Ann. Rev. Astron. Astrophys., 1996, 34:35-73
    [37] MAVROMICHALAKI H, VASSILAKI A. Fast plasma streams recorded near the earth during 1985-1996[J]. Sol. Phys., 1998, 183(1):181-200
    [38] ECHER E, GONZALEZ W D, ALVES M V. On the geomagnetic effects of solar wind interplanetary magnetic structures[J]. Space Weather, 2006, 4(6).DOI:10. 1029/2005SW000200
    [39] RICHARDSON I G. The formation of CIRs at stream-stream interfaces and resultant geomagnetic activity[J]. Geophys. M. Ser., 2006, 167:45-58
    [40] ZHANG Y, SUN W, FENG X S, et al. Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23[J]. J. Geophys. Res., 2008, 113:1-13
  • 加载中
计量
  • 文章访问数:  1026
  • HTML全文浏览量:  82
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-14
  • 修回日期:  2019-07-25
  • 刊出日期:  2020-01-15

目录

    /

    返回文章
    返回