留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research Advances of Solar Corona and Interplanetary Physics in China:2012-2014

Zhao Xinhua Wang Yuming Yan Yihua Chen Yao Cheng Xin He Jiansen Qin Gang

Zhao Xinhua, Wang Yuming, Yan Yihua, Chen Yao, Cheng Xin, He Jiansen, Qin Gang. Research Advances of Solar Corona and Interplanetary Physics in China:2012-2014[J]. 空间科学学报, 2014, 34(5): 565-604. doi: 10.11728/cjss2014.05.565
引用本文: Zhao Xinhua, Wang Yuming, Yan Yihua, Chen Yao, Cheng Xin, He Jiansen, Qin Gang. Research Advances of Solar Corona and Interplanetary Physics in China:2012-2014[J]. 空间科学学报, 2014, 34(5): 565-604. doi: 10.11728/cjss2014.05.565
Zhao Xinhua, Wang Yuming, Yan Yihua, Chen Yao, Cheng Xin, He Jiansen, Qin Gang. Research Advances of Solar Corona and Interplanetary Physics in China:2012-2014[J]. Chinese Journal of Space Science, 2014, 34(5): 565-604. doi: 10.11728/cjss2014.05.565
Citation: Zhao Xinhua, Wang Yuming, Yan Yihua, Chen Yao, Cheng Xin, He Jiansen, Qin Gang. Research Advances of Solar Corona and Interplanetary Physics in China:2012-2014[J]. Chinese Journal of Space Science, 2014, 34(5): 565-604. doi: 10.11728/cjss2014.05.565

Research Advances of Solar Corona and Interplanetary Physics in China:2012-2014

doi: 10.11728/cjss2014.05.565
详细信息
    通讯作者:

    Zhao Xinhua,E-mail:xhzhao@spaceweather.ac.cn

  • 中图分类号: P352

Research Advances of Solar Corona and Interplanetary Physics in China:2012-2014

More Information
    Corresponding author: Zhao Xinhua,E-mail:xhzhao@spaceweather.ac.cn
  • 摘要: Solar transients and their related interplanetary counterparts have severe effects on the space environments of the Earth. Therefore, the research of solar corona and interplanetary physics has become the focus of study for both solar and space scientists. Considerable progress has been achieved in these aspects by the solar and space physics community of China during 2012-2014, which will be given in this report. The brief report summarizes the research advances of solar corona and interplanetary physics into the following parts: solar wind origin and turbulence, coronal waves and seismology, solar eruptions, solar energetic particle and galactic cosmic ray, magnetic reconnection, Magnetohydrodynamic (MHD) models and their applications, waves and structures in solar wind, propagation of ICMEs/shocks and their arrival time predictions. These research achievements have been achieved by Chinese solar and space scientists independently or via international collaborations.

     

  • [1] Li B, Li X, Yu H.Interpretation of the coronal magnetic field configuration of the Sun[J].Res.Astron.Astrophys.,2012, 12:1693-1700
    [2] Li B, Chen Y, Xia L D.What geometrical factors determine the in situ solar wind speed[J].Chin.Sci.Bull.,2012, 57:1409-1414
    [3] Yang L P, He J S, Peter H, et al.Injection of plasma into the nascent solar wind via reconnection driven by supergranular advection [J].Astrophys.J., 2013, 770:6
    [4] Yang L P, He J S, Peter H, et al.Numerical simulations of chromospheric anemone jets associated with moving magnetic features[J].Astrophys.J., 2013, 777:16
    [5] He J S, Tu C Y, Marsch E, et al.Do oblique Alfvén/ioncyclotron or fast-mode/whistler waves dominate the dissipation of solar wind turbulence near the proton inertial length[J].Astrophys.J.Lett., 2012, 745:(L8)
    [6] He J S, Tu C Y, Marsch E, et al.Reproduction of the observed two-component magnetic helicity in solar wind turbulence by a superposition of parallel and oblique Alfvén waves[J].Astrophys.J., 2012, 749:86
    [7] He J S, Tu C Y, Marsch E, et al.Radial evolution of the wavevector anisotropy of solar wind turbulence between 0.3 and 1AU[J].Astrophys.J., 2013, 773:72
    [8] Wang X, Tu C Y, He J S, et al.The influence of intermittency on the spectral anisotropy of solar wind turbulence[J].Astrophys.J.Lett., 2014, 783:L9
    [9] Li G, Qin G, Hu Q, et al.Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model[J].Adv.Space Res., 2012, 49:1327-1332
    [10] Dalena S, Chuychai P, Mace R L, et al.Streamline generation code for particle dynamics description in numerical models of turbulence[J].Comput.Phys.Commun., 2012,183:1974-1985
    [11] Cheng X, Zhang J, Olmedo O, et al.Investigation of the formation and separation of an EUV wave from the expansion of a coronal mass ejection[J].Astrophys.J.Lett.,2012, 745:L5
    [12] Dai Y, Ding M D, Chen P F, et al.Quadrature observations of wave and non-wave components and their decoupling in an extreme-ultraviolet wave event[J].Astrophys.J., 2012, 759:55
    [13] Li T, Zhang J, Yang S H, et al.SDO/AIA observations of secondary waves generated by interaction of the 2011 June 7 global EUV wave with solar coronal structures[J].Astrophys.J., 2012, 746:13
    [14] Wang X, Yan Y H.A CME-driven shock analysis of the 14-Dec 2006 SEP event[J].Res.Astron.Astrophys., 2012,12(11):1535-1548
    [15] Liu J J, Zhou Z J, Wang Y M, et al.Slow magnetoacoustic waves observed above a quiet-Sun region in a dark cavity[J].Astrophys.J., 2012, 758:L26
    [16] Yang L H, Zhang J, Liu W, et al.SDO/AIA and Hinode/EIS observations of interaction between an EUV wave and active region loops[J].Astrophys.J., 2013, 775:39
    [17] Liu R, Liu C, Xu Y, et al.Observation of a Moreton wave and wave-filament interactions associated with the renowned X9 flare on 1990 May 24[J].Astrophys.J.,2013, 773:166
    [18] Li B, Habbal S R, Chen Y J.The period ratio for standing kink and sausage modes in solar structures with siphon flow.I.Magnetized slabs[J].Astrophys.J., 2013, 767:169
    [19] Chen S X, Li B, Xia L D, et al.Effects of field-aligned flows on standing kink and sausage modes supported by coronal loops[J].Sol.Phys., 2014, 289:1663-1681
    [20] Bains A S, Li B, Xia L D.Kinetic Alfvén solitary and rogue waves in superthermal plasmas[J].Phys.Plasmas,2014, 21:032123
    [21] Tian H, McIntosh S W, Xia L D, et al.What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic observations[J].Astrophys.J., 2012, 748:106
    [22] Shen C, Li G, Kong X, et al.Compound twin coronal mass ejections in the 2012 May 17 GLE events [J].Astrophys.J., 2013, 763:114
    [23] Song H Q, Kong X L, Chen Y, et al.statistical study on the morphlogy of rays and dynamics of blobs in the wake of coronal mass ejections[J].Sol.Phys., 2012, 276:261-276
    [24] Cheng, X, Zhang J, Saar S H, et al.Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona[J].Astrophys.J., 2012, 761:62
    [25] Cheng X, Zhang J, Ding M D, et al.Investigating two successive flux rope eruptions in a solar active region[J].Astrophys.J.Lett., 2013, 769:L25
    [26] Cheng X, Ding M D, Guo Y, et al.Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona[J].Astrophys.J., 2014, 780:28
    [27] Zhang J, Cheng X, Ding M D.Observation of an evolving magnetic flux rope before and during a solar eruption[J].Nat.Commun., 2012, 3:747
    [28] Cheng X, Zhang J, Ding M D, et al.The driver of coronal mass ejections in the low corona: A flux rope[J].Astrophys.J., 2013, 763:43
    [29] Li L P, Zhang J.Eruptions of two flux ropes observed by SDO and STEREO[J].A&A, 2013, 552:11
    [30] Li L P, Zhang J.Fine-scale structures of flux ropes tracked by erupting material[J].Astrophys.J.Lett., 2013,770:L25
    [31] Li L P, Zhang J.Homologous flux ropes observed by the Solar Dynamics Observatory Atmospheric Imaging Assembly[J].Astrophys.J.Lett., 2013, 778:L29
    [32] Guo Y, Ding M D, Schmieder B, et al.Evolution of hard X-ray sources and ultraviolet solar flare ribbons for a confined eruption of a magnetic flux rope[J].Astrophys.J.,2012, 746:17
    [33] Guo Y, Ding M D, Cheng X, et al.Twist accumulation and topology structure of a solar magnetic flux rope[J].Astrophys.J., 2013, 779:157
    [34] Roussev L, Galsgaard K, Downs C, et al.Explaining fast ejections of plasma and exotic X-ray emission from the solar corona[J].Nat.Phys., 2012, 8:845-849
    [35] Zhang M, Flyer N, Low B C.Magnetic helicity of selfsimilar axisymmetric force-free fields[J].Astrophys.J.,2012, 755:78
    [36] Zhang Y, Kitai R, Takizawa K.Magnetic helicity transported by flue emergence and shuffling motions in solar active region NOAA 10930[J].Astrophys.J., 2012, 751:85
    [37] Gao Y, Zhao J W, Zhang H Q.Analysis on correlations between subsurface kinetic helicity and photospheric current helicity in active region[J].Astrophys.J.Lett., 2012,761:L9
    [38] Yang S B, Zhang H Q.Large-scale magnetic helicity fluxs estimated from MDI magnetic synoptic charts over the Solar Cycle 23[J].Astrophys.J., 2012, 758:61
    [39] YangS B, Büchner J, Santos J C, et al.Evolution of relative magnetic helicity: Method of computation and its application to a simulated solar corona above an active region[J].Sol.Phys., 2013, 283:369-382
    [40] Wang Y M, Liu L J, Shen C L, et al.Waiting times of quasi-homologous coronal mass ejections from super active regions[J].Astrophys.J., 2013, 763:L43
    [41] Song H Q, Chen Y, Ye D D, et al.A study on fast flareless CMEs[J].Astrophys.J., 2013, 773:129
    [42] Shen C L, Wang Y M, Pan Z H, et al.Full halo coronal mass ejections: Do we need to correct the projection effect in terms of velocity[J].J.Geophys.Res., 2013, 118:1-8
    [43] Ruan G P, Chen Y, Wang S, et al.A solar eruption driven by rapid sunspot rotation[J].Astrophys.J., 2014,784:165
    [44] Song H Q, Zhang J, Cheng X, et al.Temperature evolution of a magnetic flux rope in a failed solar eruption[J].Astrophys.J., 2014, 784:48
    [45] Feng L, Inhester B, Wei Y, et al.Morphological evolution of a three-dimensional coronal mass ejection cloud reconstructed from three viewpoints[J].Astrophys.J., 2012,751:18
    [46] Feng L, Inhester B, Mierla M.Comparisons of CME morphological characteristics derived from five 3D reconstruction methods[J].Sol.Phys., 2013, 282:221-238
    [47] Feng L, Wiegelman T, Su Y, et al.Magnetic energy partition between the coronal mass ejection and flare from AR 11283[J].Astrophys.J., 2013, 765:37
    [48] Dai X H, Wang H N, Huang X, et al.The classification of ambiguity in polarimetric reconstruction of coronal mass ejection[J].Astrophys.J., 2014, 780:141
    [49] Kong X, Li G, Chen Y.A statistical study of the spectral hardening of continuum emission in solar flares[J].Astrophys.J., 2013, 774:140
    [50] Li G, Kong X, Zank G, et al.On the spectral hardening at≥ 300keV in solar flares[J].Astrophys.J., 2013, 769:22
    [51] Liu K, Zhang J, Wang Y M, et al.On the origin of the extreme-ultraviolet late phase of solar flares[J].Astrophys.J., 2013, 768:150
    [52] Liu R, Liu C, Török T, et al.Contracting and erupting components of sigmoidal active regions[J].Astrophys.J.,2012, 757:150
    [53] Liu K, Wang Y M, Shen C L, et al.Critical height for the destabilization of solar prominences: Statistical results from STEREO observations[J].Astrophys.J., 2012,744:168
    [54] Liu R, Kliem B, Török T, et al.Slow rise and partial eruption of a double-decker filament.I.Observations and interpretation[J].Astrophys.J., 2012, 756:59
    [55] Liu J J, Wang Y M, Liu R, et al.When and how does a prominence-like jet gain kinetic energy[J].Astrophys.J.,2014, 782:94
    [56] Xia C, Chen P F, Keppens R.Simulations of prominence formation in the magnetized solar corona by chromospheric heating[J].Astrophys.J.Lett., 2012, 748:26
    [57] Zhang Q M, Chen P F, Xia C, et al.Observations and simulations of longitudinal oscillations of an active region prominence[J].A&A, 2012, 542:52
    [58] Zhang Q M, Chen P F, Xia C, et al.Parametric survey of longitudinal prominence oscillation simulations[J].A&A,2013, 554:124
    [59] Li T, Zhang J.SDO/AIA observations of large-amplitude longitudinal oscillations in a solar filament[J].Astrophys.J.Lett., 2012, 760:10
    [60] Jiang Y C, Zheng R S, Yang J Y, et al.Rapid sunspot rotation associated with the X2.2 flare on 2011 February 15[J].Astrophys.J., 2012, 744:50
    [61] Yan X L, Qu Z Q, Kong D F, et al.Sunspot rotation,sigmoidal filament, flare, and coronal mass ejection: The event on 2000 February 10[J].Astrophys.J., 2012, 754:16
    [62] Yan X L, Qu Z Q, Kong D F, et al.Case study of a complex active-region filament eruption[J].A&A, 2013,557:108
    [63] Bi Y, Jiang Y C, Li H D, et al.Eruption of a solar filament consisting of two threads[J].Astrophys.J., 2012,758:42
    [64] Bi Y, Jiang Y C, Yang J Y, et al.Analysis of the simultaneous rotation and non-radial propagation of an eruptive filament[J].Astrophys.J., 2013, 773:162
    [65] Jiang Y C, Hong J C, Yang J Y, et al.Partial slingshot reconnection between two filaments[J].Astrophys.J., 2013,764:68
    [66] Kong, D F, Yan X L, Xue Z K.The interaction and eruption of two adjacent filaments[J].Astron.Space Sci.,2013, 348(2):303-313
    [67] Wang R, Yan Y H, Tan B L.Three-dimensional nonlinear force-free field reconstruction of solar active region 11158 by direct boundary integral equation [J].Sol.Phys., 2013,288:507-529
    [68] Yan X L, Pan G M, Liu J H, et al.The contraction of overlying coronal loop and the rotating motion of a sigmoid filament during its eruption[J].Astrophys.J., 2013,145:153
    [69] Yan X L, Xue Z K, Liu J H, et al.Kink instability evidenced by analyzing the leg rotation of a filament[J].Astrophys.J., 2014, 782:67
    [70] Zhang Y Z.The formation and eruption of solar quiescent prominences[J].Astrophys.J., 2013, 777:52
    [71] Chen P F, Harra L K, Fang C.Imaging and spectroscopic observations of a filament channel and the implication to the nature of counter-streamings[J].Astrophys.J., 2014,784:50
    [72] Feng S W, Chen Y, Kong X L, et al.Radio signatures of coronal-mass-ejection-streamer interaction and source diagnostics of Type II radio burst[J].Astrophys.J., 2012,753:21
    [73] Kong X L, Chen Y, Li G, et al.A broken solar type II radio burst induced by a coronal shock propagating across the streamer boundary[J].Astrophys.J., 2012, 750:158
    [74] Feng S W, Chen Y, Kong X L, et al.Diagnostics on the source properties of type II radio burst with spectral bumps[J].Astrophys.J., 2013, 767:29
    [75] Liu R.Dynamical processes at the vertical current sheet behind an erupting flux rope[J].Mon.Notic.Roy.Astron.Soc., 2013, 434:1309-1320
    [76] Shen C L, Liao C J, Wang Y M, et al.Source region of the Decameter-Hectometric type II radio burst:Shock-streamer interaction region[J].Sol.Phys., 2013,282(2):543-552
    [77] Chen Y.A review of recent studies on coronal dynamics: Streamers, coronal mass ejections, and their interactions[J].Chin.Sci.Bull.(invited review), 2013,58(14):1599-1624.
    [78] Huang J, Tan B L.Microwave bursts with fine structure in the decay phase of a solar flare[J].Astrophys.J., 2012,745:186
    [79] Tan B L, Tan C M.Microwave quasi-periodic pulsation with millisecond bursts in a solar flare on 2011 August 9[J].Astrophys.J., 2012, 749:28
    [80] Tan B L, Yan Y H, Tan C M, et al.Microwave zebra pattern structures in the X 2.2 solar flare on 2011 February 15[J].Astrophys.J., 2012, 744:166
    [81] Yu S J, Yan Y H, Tan B L.Relaxation of magnetic field relative to plasma density revealed from microwave zebra patterns associated with solar flares[J].Astrophys.J.,2012, 761:136
    [82] Yu S J, Nakariakov V M, Selzer L A, et al.Quasi-periodic wiggles of microwave zebra structures in a solar flare[J].Astrophys.J., 2013, 777:159
    [83] Wang R, Tan B L, Tan C M, et al.Reversed drifting quasi-periodic pulsating structure in an X1.3 solar flare on 30 July 2005[J].Sol.Phys., 2012, 278:411-419
    [84] Tan B L.Small-scale microwave bursts in long-duratio nsolar flares[J].Astrophys.J., 2013, 773:165
    [85] Wang L H, Lin R P, Salem C, et al.Quiet-time interplanetary ~2–20keV superhalo electrons at solar minimum[J].Astrophys.J., 2012, 753:L23
    [86] Wang L H, Lin R P, Krucker S, et al.A statistical study of solar electron events over one solar cycle[J].Astrophys.J., 2012, 759:69
    [87] Wang Y, Qin G, Zhang M.Effects of perpendicular diffusion on energetic particles accelerated by the interplanetary coronal mass ejection shock[J].Astrophys.J., 2012,752:37
    [88] Qin G, Shalchi A.Numerical investigation of the influence of large turbulence scales on the parallel and perpendicular transport of cosmic rays[J].Adv.Space Res., 2012,49:1643-1652
    [89] Qin G, Wang Y, Zhang M, et al.Transport of solar energetic particles accelerated by ICME shocks: Reproducing the reservoir phenomenon [J].Astrophys.J., 2013, 766:74
    [90] Qin G, Shalchi A.The role of the Kubo number in two-component turbulence[J].Phys.Plasmas, 2013,20:092302
    [91] Qin G, Shalchi A.Detailed numerical investigation of 90~ scattering of energetic particles interacting with magnetic turbulence[J].Phys.Plasmas, 2014, 21:042906
    [92] Qin G, Shalchi A.Pitch-angle dependent perpendicular diffusion of energetic particles interacting with magnetic turbulence[J].Appl.Phys.Res., 2014, 6:1
    [93] Qin G, Zhang L H.The modification of the nonlinear guiding center theory[J].Astrophys.J., 2014, 787:12
    [94] Wu Z, Chen Y, Li G, et al.Observations of energetic particles between a pair of Corotating Interaction Regions[J].Astrophys.J., 2014, 781:17
    [95] Qin G, Zhao L L, Chen H C.Despiking of spacecraft energetic proton flux to study galactic cosmic-ray modulation[J].Astrophys.J., 2012, 752:138
    [96] Zhao L L, Qin G.An observation-based GCR model of heavy nuclei: measurements from CRIS onboard ACE spacecraft[J].J.Geophys.Res., 2013, 118:1837-1848
    [97] Zhao L L, Qin G, Zhang M, et al.Modulation of Galactic cosmic rays during the unusual solar minimum between cycles 23 and 24[J].J.Geophys.Res., 2014, 119:1493-1506
    [98] Song H Q, Chen Y, Li G, et al.Coalescence of macroscopic magnetic islands and electron acceleration from STEREO observation[J].Phys.Rev.X, 2012, 2:021015
    [99] Xu X J, Wei F S, Feng X S.Characteristics of reconnection diffusion region in the solar wind[J].Chin.J.Space Sci., 2012, 32(6):778-784
    [100] Zhang S H, Feng X S, Yang L P.2.5D AMR MHD magnetic reconnection model[J].Chin.J.Space Sci., 2012,32(6):785-792
    [101] Wang Y, Wei F S, Feng X S, et al.Variations of solar electron and proton flux in magnetic cloud boundary layers and comparisons with those across the shocks and in the reconnection exhausts[J].Astrophys.J., 2012, 749:82
    [102] Zhang S H, Du A M, Feng X S, et al.Electron acceleration in a dynamically evolved current sheet under solar coronal conditions[J].Sol.Phys., 2014, 289:1607-1623
    [103] Feng X S, Yang L P, Xiang C Q, et al.Validation of the 3D AMR SIP-CESE solar wind model for four carrington rotations[J].Sol.Phys., 2012, 279:207-229
    [104] Feng X S, Xiang C Q, Zhong D K, et al.SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes[J].Comput.Phys.Commun., 2014,185(7):1965-1980
    [105] Feng X S, Jiang C W, Xiang C Q, et al.A data-driven model for the global coronal evolution[J].Astrophys.J.,2012, 758(62):13
    [106] Yang L P, Feng X S, Xiang C Q, et al.Time-dependent MHD modeling of the global solar corona for year 2007:Driven by daily-updated magnetic field synoptic data[J].J.Geophys.Res., 2012, 117, A08110,doi: 10.1029/2011JA017494
    [107] Feng X S, Zhong D K, Xiang C Q, et al.GPU-accelerated computing of three-dimensional solar wind background [J].Sci.China: Earth Sci., 2013, 56(11):1864-1880
    [108] Feng X S, Zhong D K, Xiang C Q, et al.GPU Computing in Space Weather Modeling[C]//Proceedings of a 7th International Conference.Big Island, Hawaii: Astronomical Society of the Pacific, 2013:131-139
    [109] Jiang C W, Feng X S, Xiang C Q.A new code for nonlinear force-free field extrapolation of the global corona[J].Astrophys.J., 2012, 755:62
    [110] Jiang C W, Feng X S.A new implementation of the magnetohydrodynamics-relaxation method for nonlinear force-free field extrapolation in the solar corona[J].Astrophys.J., 2012, 749:135
    [111] Jiang C W, Feng X S.A unified and very fast way for computing the global potential and linear force-free fields[J].Sol.Phys., 2012, 281:621-637
    [112] Jiang C W, Feng X S, Wu S T, et al.Study of the threedimensional coronal magnetic field of active region 11117 around the time of a confined flare using a data-driven CESE-MHD model[J].Astrophys.J., 2012, 759:85
    [113] Jiang C W, Feng X S.Extrapolation of the solar coronal magnetic field from SDO/HMI magnetogram by a CESEMHDNLFFF code[J].Astrophys.J., 2013, 769:144
    [114] Jiang C W, Feng X S, Wu S T, et al.Magnetohydrodynamic simulation of a sigmoid eruption of active region 11283[J].Astrophys.J., 2013, 771:L30
    [115] Jiang C W, Feng X S, Wu S T, et al.Nonlinear forcefree field extrapolation of a coronal magnetic flux rope supporting a large-scale solar filament from a photospheric vector magnetogram [J].Astrophys.J.Lett., 2014,786:L16
    [116] Jiang C W, Feng X S, Wu S T, et al.Formation and eruption of an active region sigmoid.I.A study by nonlinear force-free field modeling[J].Astrophys.J., 2014, 780:55
    [117] Jiang C W, Feng X S.Preprocessing the photospheric vector magnetograms for an NLFFF extrapolation using a potential-field model and an optimization method[J].Sol.Phys., 2014, 289:63-77
    [118] Zhou Y F, Feng X S, Wu S T, et al.Using a 3-D spherical plasmoid to interpret the Sun-to-Earth propagation of the 4 November 1997 coronal mass ejection event [J].J.Geophys.Res., 2012, 117, A01102, doi: 10.1029/2010JA016380
    [119] Zhou Y F, Feng X S.MHD numerical study of the latitudinal deflection of coronal mass ejection[J].J.Geophys.Res.Space Phys., 2013, 118:6007-6018
    [120] Zhou Y F, Feng X S.An improved CESE method and its application to steady-state coronal structure simulation[J].Sci.China: Earth Sci., 2014, 57(1):153-166
    [121] Zhou Y F, Feng X S.A new hybrid numerical scheme for two-dimensional ideal MHD equations[J].Chin.Phys.Lett., 2012, 29(9):094703
    [122] Jiang C W, Cui S X, Feng X S.Solving the Euler and Navier-Stokes equations by the AMRCESE method[J].Comput.Fluids, 2012, 54:105-117
    [123] Zhang Y Y, Feng X S, Jiang C W, et al.Application of ADER scheme in MHD simulation[J].Chin.J.Space Sci., 2012, 32(2): 170-181
    [124] Shen F, Wu S T, Feng X S, et al.Acceleration and deceleration of coronal mass ejections during propagation and interaction[J].J.Geophys.Res., 2012, 117, A11101,doi: 10.1029/2012JA017776
    [125] Shen F, Wu S T, Feng X S, et al.Improvement to the global distribution of coronal plasma and magnetic field on the source surface using expansion factor fs and angular distance θb[J].J.Atmos.Sol.Terr.Phys., 2012,77:125-131
    [126] Shen F, Feng X S, Xiang C Q, et al.Modeling source surface plasma and magnetic field based on expansion factor fs and angular distance θb between the foot points[C]//Proceedings of a 6th internation conference.Big Island, Hawaii: Astronomical Society of the Pacific,2013:172-178
    [127] Wang X, He J S, Tu C Y, et al.Large-amplitude Alfvén wave in interplanetary space: The WIND spacecraft observations[J].Astrophys.J., 2012, 746:147
    [128] Wang X, Tu C Y, He J S,, et al.On intermittent turbulence heating of the solar wind: Differences between tangential and rotational discontinuities[J].Astrophys.J.Lett., 2013, 772:L14
    [129] Yao S, He J S, Tu C Y, et al.Small-scale pressure-balanced structures driven by oblique slow mode waves measured in the solar wind[J].Astrophys.J., 2013,774:59
    [130] Wang C B, Wei J D, Wang B, et al.Physical process for the pick-up of minor ions by low-frequency Alfvén waves[J].Chin.Phys.Lett., 2013, 30(5):055201
    [131] Yang Z W, Han D S, Yang H G, et al.Contributions to the cross shock electric field at supercritical perpendicular shocks: Impact of the pickup ions[J].Astrophys.Space Sci., 2012, 341:241-250
    [132] Yang Z W, Lembège B, Lu Q M.Impact of the rippling of a perpendicular shock front on ion dynamics[J].J.Geophys.Res., 2012, 117, A07222,doi: 10.1029/2011JA017211
    [133] Liu Y D, Luhmann J G, MöstlC, et al.Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations[J].Astrophys.J.Lett., 2012,746:L15
    [134] Shen C L, Wang Y M, Wang S, et al.Super-elastic collision of large-scale magnetized plasmoids in the heliosphere[J].Nature Phys., 2012, 8:923-928
    [135] Shen F, Shen C L, Wang Y M, et al.Could the collision of CMEs in the heliosphere be superelastic? Validation through three-dimensional simulations[J].Geophys.Res.Lett., 2013, 40:1-5
    [136] Shen F, Feng X S, Wu S T.3D MHD numerical study of two CMEs’ evolution and their interaction[C]//Proceedings of a 6th internation conference.Big Island, Hawaii:Astronomical Society of the Pacific, 2012:247-253
    [137] Liu Y D, Luhmann J G, Lugaz N, et al.On Sun-to-Earth propagation of coronal mass ejections[J].Astrophys.J.,2013, 769:45
    [138] Xiong M, Davies J A, Feng X H, et al.Using coordinated observations in polarized white light and Faraday rotation to probe the spatial position and magnetic field of an interplanetary sheath[J].Astrophys.J., 2013, 777:32
    [139] Xiong M, Davies J A, Bisi M M, et al.Effects of Thomsonscattering geometry on white-light imaging of an interplanetary shock:Synthetic observations from forward magnetohydro-dynamic modelling[J].Sol.Phys., 2013,285:369-389
    [140] Zhang Y, Du A M, Feng X S, et al.Simulated (STEREO) views of the solar wind disturbances following the coronal mass ejections of 1 August 2010[J].Sol.Phys., 2014,289:319-338
    [141] Liu H L, Qin G.Using Soft X-ray observations to help the prediction of flare related interplanetary shocks arrival times at the Earth[J].J.Geophys.Res., 2012,117:A04108
    [142] Zhao X H, Feng X S.Shock Propagation Model version 2 and its application in predicting the arrivals at Earth of interplanetary shocks during Solar Cycle 23[J].J.Geophys.Res., 2014, 119:1-10
    [143] Liu Y D, Luhmann J G, Kajdi? P, et al.Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections[J].Nat.Commun., 2014,5:3481
  • 加载中
计量
  • 文章访问数:  1229
  • HTML全文浏览量:  42
  • PDF下载量:  5569
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-19
  • 修回日期:  2014-07-07
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回