留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SAMPEX卫星观测的南大西洋异常区高能质子动态分布特征

吕景天 张效信 林瑞淋 何飞 蒋勇

吕景天, 张效信, 林瑞淋, 何飞, 蒋勇. 基于SAMPEX卫星观测的南大西洋异常区高能质子动态分布特征[J]. 空间科学学报, 2015, 35(2): 192-202. doi: 10.11728/cjss2015.02.192
引用本文: 吕景天, 张效信, 林瑞淋, 何飞, 蒋勇. 基于SAMPEX卫星观测的南大西洋异常区高能质子动态分布特征[J]. 空间科学学报, 2015, 35(2): 192-202. doi: 10.11728/cjss2015.02.192
LÜ Jingtian, ZHANG Xiaoxin, LIN Ruilin, HE Fei, JIANG Yong. Dynamic Distribution Features of Energetic Proton in South Atlantic Anomaly Based on the Observation of SAMPEX[J]. Chinese Journal of Space Science, 2015, 35(2): 192-202. doi: 10.11728/cjss2015.02.192
Citation: LÜ Jingtian, ZHANG Xiaoxin, LIN Ruilin, HE Fei, JIANG Yong. Dynamic Distribution Features of Energetic Proton in South Atlantic Anomaly Based on the Observation of SAMPEX[J]. Chinese Journal of Space Science, 2015, 35(2): 192-202. doi: 10.11728/cjss2015.02.192

基于SAMPEX卫星观测的南大西洋异常区高能质子动态分布特征

doi: 10.11728/cjss2015.02.192
基金项目: 国家重点基础研究发展计划项目资助(2012CB957803)
详细信息
    通讯作者:

    张效信,E-mail:xxzhang@cma.gov.cn

  • 中图分类号: P352

Dynamic Distribution Features of Energetic Proton in South Atlantic Anomaly Based on the Observation of SAMPEX

  • 摘要: 利用SAMPEX卫星1992年7月至2004年6月19~27MeV高能质子数据对南大西洋异常区的分布特征进行研究, 发现南大西洋异常区高能质子分布随高度及F10.7的变化十分显著. 在540±25km高度上, 地磁较为平静时期南大西洋异常区高能质子微分通量随着F10.7的增大而减小, 同时在F10.7≥115sfu时减小趋势较为平缓. 对中等及以上磁暴进行统计分析发现, 磁暴期间南大西洋异常区高能质子微分通量和SYM-H指数的绝对值存在明显的反相关关系, 且地磁暴对南大西洋异常区高能质子微分通量存在明显的持续影响效应. 磁暴发生期间高能质子微分通量明显减少. 磁暴恢复相及其之后高能质子微分通量呈现较为显著的恢复过程.

     

  • [1] Li X, Baker D N, Kanekal S G, et al. Long term measurements of radiation belts by SAMPEX and their variations[J]. Geophys. Res. Lett., 2001, 28(20):3827-3830
    [2] Shi Liqin, Lin Ruilin, Liu Siqing, et al. Effect of solar cycle activity on high energy proton of inner radiation belt in the low altitude region[J]. Chin. J. Space Sci., 2012, 32(6): 804-811
    [3] Miyoshi Y, Morioka A, Misawa H, et al. Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations[J]. J. Geophys. Res.: Space Phys., 2003, 108(A1): SMP 3-1-SMP 3-15
    [4] Looper M D, Blake J B, Mewaldt R A. Response of the inner radiation belt to the violent Sun-Earth connection events of October—November 2003[J]. Geophys. Res. Lett., 2005, 32 ; L030506, doi: 10.1029/2004GL021502
    [5] Zou H, Zong Q G, Parks G K, et al. Response of high-energy protons of the inner radiation belt to large magnetic storms[J]. J. Geophys. Res.: Space Phys., 2011, 116, A10229
    [6] Ginet G P, O'Brien T P, Huston S L, et al. AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment[J]. Space Sci. Rev., 2013, 179(1-4):579-615
    [7] Meffert J D, Gussenhoven M S. CRRESPRO documentation[R]. Bedford, Massachusetts: Phillips Laboratory, Hanscom Air Force Base, 1994
    [8] Huston S L, Kuck G A, Pfitzer K A. Low altitude trapped radiation model using TIROS/NOAA data[J]. Geophys. Monog. Ser., 1996, 97:119-122
    [9] Boscher D M, Bourdarie S A, Friedel R H W, et al. Model for the geostationary electron environment: POLE[J]. IEEE Trans. Nucl. Sci., 2003, 50(6):2278-2283
    [10] Heynderickx D, Kruglanski M, Pierrard V, et al. A low altitude trapped proton model for solar minimum conditions based on SAMPEX/PET data[J]. IEEE Trans. Nucl. Sci., 1999, 46(6):1475-1480
    [11] Roeder J L, Chen M W, Fennell J F, et al. Empirical models of the low-energy plasma in the inner magnetosphere[J]. Space Weather, 2005, 3, S12B06
    [12] Hartmann G A, Pacca I G. Time evolution of the South Atlantic magnetic anomaly[J]. Anais Acad. Bras. Ciěnc., 2009, 81(2):243-255
    [13] Li Baoquan, Zhu Guangwu, Wang Shijing, et al. The space particle composition detector on board FY-1C satellite and the analysis of particle radiation in the South Atlantic Anomaly Region[J]. Chin. J. Geophys., 2004, 47(6):1074-1078
    [14] Liu Siqing, Liu Jing, Shi Linqin, et al. m Space environment support for the SZ-5 spacecraft[J]. Physics, 2004, 33(5):359-366
    [15] Badhwar G D. Drift rate of the South Atlantic anomaly[J]. J. Geophys. Res.: Space Phys., 1997, 102 (A2): 2343-2349
    [16] Hell N, Bamberg R S. The Evolution of the South Atlantic Anomaly Measured by RHESSI[M]. Erlangen-Nürnberg: Elangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität, 2010
    [17] Pu Zuyin, Fang Xiaohua, Jiao Weixin. Study on inner radiation belt space climate[J]. Science China: A, 2000, 1:131-135
    [18] Lin C S, Yeh H C. Satellite observations of electric fields in the South Atlantic anomaly region during the July 2000 magnetic storm[J]. J. Geophys. Res.: Space Phys., 2005, 110, A03305
    [19] Asikainen T, Mursula K. Filling the South Atlantic anomaly by energetic electrons during a great magnetic storm[J]. Geophys. Res. Lett., 2005, 32(16):1-4
    [20] Asikainen T, Mursula K. Energetic electron flux behavior at low L-shells and its relation to the South Atlantic Anomaly[J]. J. Atmos. Solar-Terr. Phys., 2008, 70 (2):532-538
    [21] Barnes C E, Ott M N, Johnston A H, et al. Recent photonics activities under the NASA electronic parts and packaging (NEPP) program[C]//International Symposium on Optical Science and Technology. Seattle: International Society for Optics and Photonics, 2002:189-204
    [22] Wang Tongquan, Dai Hongyi, Shen Yongping, et al. Calculation of cosmic high energy proton induced single event upset rate[J]. J. Nat. Univ. Def. Tech., 2002, 24(2):11-13
    [23] Du Heng, Ye Zonghai. LEO spacecraft Space Environment Manual[M]. Beijing: National Defense Industry Press, 1996
    [24] Gu Shifen, Zang Zhenqun, Shi Linqin, et al. Study on SEU occurred on board of several space shuttles[J]. Chin. J. Space Sci., 1997, 18(3):253-260
    [25] Baker D N, Mason G M, Figueroa O, et al. An overview of the solar anomalous, and magnetospheric particle explorer (SAMPEX) mission[J]. IEEE Trans. Geosci. Remote Sens., 2014, 31(3):531-541
    [26] Hudson M K, Elkington S R, Lyon J G, et al. Simulations of radiation belt formation during storm sudden commencements[J]. J. Geophys. Res.: Space Phys., 1997, 102 (A7):14087-14102
    [27] Young S L, Denton R E, Anderson B J, et al. Magnetic field line curvature induced pitch angle diffusion in the inner magnetosphere[J]. J. Geophys. Res.: Space Phys., 2008, 113, A03210
    [28] Summers D, Thorne R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms[J]. J. Geophys. Res.: Space Phys., 2003, 108, SMP2
    [29] He Zhaoguo. Research on the enhancements of energetic outer radiation belt electron fluxes driven by chorus wave during magnetic storm[D]. Changsha: Changsha University of Science and Technology, 2011
  • 加载中
计量
  • 文章访问数:  1091
  • HTML全文浏览量:  61
  • PDF下载量:  1377
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-03
  • 修回日期:  2014-10-14
  • 刊出日期:  2015-03-15

目录

    /

    返回文章
    返回