留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳活动与热层大气密度的相关性研究

牛俊 方涵先 翁利斌

牛俊, 方涵先, 翁利斌. 太阳活动与热层大气密度的相关性研究[J]. 空间科学学报, 2014, 34(1): 73-80. doi: 10.11728/cjss2014.01.073
引用本文: 牛俊, 方涵先, 翁利斌. 太阳活动与热层大气密度的相关性研究[J]. 空间科学学报, 2014, 34(1): 73-80. doi: 10.11728/cjss2014.01.073
Niu Jun, Fang Hanxian, Weng Libin. Correlations between solar activity and thermospheric density[J]. Chinese Journal of Space Science, 2014, 34(1): 73-80. doi: 10.11728/cjss2014.01.073
Citation: Niu Jun, Fang Hanxian, Weng Libin. Correlations between solar activity and thermospheric density[J]. Chinese Journal of Space Science, 2014, 34(1): 73-80. doi: 10.11728/cjss2014.01.073

太阳活动与热层大气密度的相关性研究

doi: 10.11728/cjss2014.01.073
详细信息
    通讯作者:

    牛俊,E-mail:990653674@qq.com

  • 中图分类号: P352

Correlations between solar activity and thermospheric density

  • 摘要: 为分析太阳活动对热层大气的影响,使用250km,400km,550km高度处热层大气密度与太阳F10.7指数数据,研究了二者的周期变化及相关关系. 结果表明,热层大气密度的变化与太阳活动呈现相似的变化趋势;两者均具有显著的27天及11年周期变化特征,热层大气密度还存在7~11天及0.5年和1年的变化特征,且高度越高越明显;热层大气密度对太阳活动的最佳响应滞后为3天,无论何种地磁活动水平下,400km高度处相关性高于250km,550km处相关性最小,且太阳活动下降相期间高于上升相;250km,400km和550km高度处热层大气密度和太阳活动的统计结果分别为饱和、线性和放大关系;高度越高的热层大气密度对太阳活动响应越敏感.

     

  • [1] Weng Libin, Fang Hanxian, Ji Chunhua, et al. Comparison between the CHAMP/STAR derived thermospheric density and the NRLMSISE-00 model[J]. Chin. J. Space Sci., 2012, 32(5):713-719. In Chinese (翁利斌, 方涵先, 季春华, 等. CHAMP/STAR数据反演热层大气密度以及与NRLMSISE-00模式比较研究[J]. 空间科学学报, 2012, 32(5): 713-719)
    [2] Picone J M, Hedin A E, Drob D P, Aikin A C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107:(A12): 1468, doi: 10.1029/2002JA009430
    [3] Jacchia L G. Two atmosphere effects in the orbital acceleration of artificial satellites[J]. Nature, 1959, 183:526-527
    [4] Roemer M, Framke W, Schuchardt K G H. Solar EUV and decimetric indices and thermospheric models[J]. Adv. Space Res., 1983, 3:75-83
    [5] Rhoden E A, Forbes J M, Marcos F A. The influence of geomagnetic and solar variabilities on lower thermosphere density[J]. J. Atmos. Solar Terr. Phys., 2000, 62:999-1013
    [6] Eastes R, Bailey S, Marcos F, et al. The correspondence between thermospheric neutral densities and broadband measurements of the total solar soft X-ray flux[J]. Geophys. Res. Lett., 2004, 31, L19804, doi:10. 1029/2004GL020801
    [7] Guo J, Wan W, Forbes J M, et al. Effects of solar variability on thermosphere density from CHAMP accelerometer data[J]. J. Geophys. Res., 2007, 112, A10308, doi:10. 1029/2007JA012409
    [8] Lei J, Thayer J P, Forbes J M, et al. Rotating solar coronal holes and periodic modulation of the upper atmosphere[J]. Geophys. Res. Lett., 2008, 35, L10109
    [9] Lei J, Thayer J P, Forbes J M, et al. Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23[J]. J. Geophys. Res., 2008, 113, A11303, doi: 10.1029/2008JA013433
    [10] Emmert J T. A long-term data set of globally averaged thermospheric total mass density[J]. J. Geophys. Res., 2009, 114, doi: 10.1029/2009JA014102
    [11] Liu L B, Wan W X, Chen Y D, et al. Solar activity effects of the ionosphere: A brief review[J]. Chin. Sci. Bull., 2011, 56, doi: 10.1007/s11434-010-4226-9
    [12] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bull. Am. Meteor. Soc., 1998, 79(1):61-78
    [13] Weng Libin, Fang Hanxian, Zhang Yang, et al. Correlation research between the sunspot numbers and the cosmic rays based on wavelet and cross wavelet analysis[J]. Chin.Space Sci., 2013, 33(1):13-19. In Chinese (翁利斌, 方涵先, 张阳, 等. 利用小波技术研究宇宙线和太阳黑子的相互关系[J]. 空间科学学报, 2013, 33(1):13-19)
    [14] Chaman L. Sun-Earth geometry, geomagnetic activity and planetary F2 layer ion density, Part I: Signatures of magnetic reconnection[J]. J. Atmos. Solar Terr. Phys., 2000, 62(1):3-16
    [15] Thayer J P, Lei J H, Forbes J M, et al. Thermospheric density oscillations due to periodic solar wind high-speed streams[J]. J. Geophys. Res., 2008, 113, A06307, doi: 10.1029/2008JA013190
    [16] Bruinsma S, Forbes J M, Nerem R S, Zhang X. Thermosphere density response to the 20—21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data[J]. J. Geophys. Res., 2006, 111, A06303, doi: 10.1029/2005JA011284
    [17] Liu H, Lühr H. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations[J]. J. Geophys. Res., 2005, 110, A09S29, doi:10. 1029/2004JA010908
    [18] Huang Jing, Zhou Limin, Xiao Ziniu, et al. Effect of solar wind speed on the middle and high atmosphere circulation of meteorological to climatological scale[J]. Chin. J. Space Sci., 2013, 33(6):637-644. In Chinese (黄静, 周立旻, 肖子牛, 等. 天气尺度到气候尺度太阳风变速对中高纬大气环流的影响[J]. 空间科学学报, 2013, 33(6):637-644
    [19] Sutton E K, Forbes J M, Nerem R S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data[J]. J. Geophys. Res., 2005, 110, A09S40, doi: 10.1029/2004JA010985
    [20] Hanxian Fang, Libin Weng, Shengzheng. Variations in the thermosphere and ionosphere response to the 17—20 april 2002 geomagnetic storms[J]. Adv. Space Res., 2012, doi: 10.1016/j.asr.2012.02.024
    [21] Chakraborty S K, Hajra R. Solar control of ambient ionization of the ionosphere near the crest of the equatorial anomaly in the Indian zone[J]. Ann. Geophys., 2008, 26:47-57
    [22] Kane R P. Fluctuations in the ~27-day sequences in the solar index F10.7 during solar cycles 22—23[J]. J. Atmos. Solar Terr. Phys., 2003, 65:1169-1174
    [23] Balan N, Bailey G J, Su Y Z. Variations of the ionosphere and related solar fluxes during solar cycles 21 and 22[J]. Adv. Space Res., 1996, 18:11-14
    [24] Chen Y I, Liu J Y, Chen S C. Statistical investigation of the saturation effect of sunspot on the ionospheric f0F2[J]. Phys. Chem. Earth: C, 2000, 25:359-362
    [25] Liu J Y, Chen Y I, Lin J S. Statistical investigation of the saturation effect in the ionospheric f0F2 versus sunspot, solar radio noise, and solar EUV radiation[J]. J. Geophys. Res., 2003, 108:1067
    [26] Weng Libin, Fang Hanxian, Zhang Yang, et al. Ionospheric TEC, NmF2 and slab thickness over Athens region[J]. Chin. J. Geophys., 2012, 11:3558-3567. In Chinese (翁利斌, 方涵先, 张阳, 等. Athens地区电离层TEC, NmF2 以及板厚研究[J]. 地球物理学报, 2012, 11:3558-3567)
    [27] Fang H X, Weng L B, Yang S G, et al. Long-term trends in f0F2 over Moscow ionosonde station: Its estimate and origins[J]. Chin. Sci. Bull., 2012, 57:1-7
  • 加载中
计量
  • 文章访问数:  1253
  • HTML全文浏览量:  45
  • PDF下载量:  1860
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-21
  • 修回日期:  2014-04-13
  • 刊出日期:  2014-01-15

目录

    /

    返回文章
    返回