留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

姿态角幅值约束下的太阳帆Lissajous轨道保持控制

张辉 朱敏 周建亮 王永

张辉, 朱敏, 周建亮, 王永. 姿态角幅值约束下的太阳帆Lissajous轨道保持控制[J]. 空间科学学报, 2014, 34(6): 872-880. doi: 10.11728/cjss2014.06.872
引用本文: 张辉, 朱敏, 周建亮, 王永. 姿态角幅值约束下的太阳帆Lissajous轨道保持控制[J]. 空间科学学报, 2014, 34(6): 872-880. doi: 10.11728/cjss2014.06.872
Zhang Hui, Zhu Min, Zhou Jianliang, Wang Yong. Station-keeping control of solar sail Lissajous orbit with attitude angles amplitude constraint[J]. Chinese Journal of Space Science, 2014, 34(6): 872-880. doi: 10.11728/cjss2014.06.872
Citation: Zhang Hui, Zhu Min, Zhou Jianliang, Wang Yong. Station-keeping control of solar sail Lissajous orbit with attitude angles amplitude constraint[J]. Chinese Journal of Space Science, 2014, 34(6): 872-880. doi: 10.11728/cjss2014.06.872

姿态角幅值约束下的太阳帆Lissajous轨道保持控制

doi: 10.11728/cjss2014.06.872
详细信息
    通讯作者:

    张辉,zhanghui@mail.ustc.edu.cn

  • 中图分类号: V416

Station-keeping control of solar sail Lissajous orbit with attitude angles amplitude constraint

  • 摘要: 太阳帆航天器以两姿态角作为轨道控制输入时, 其轨道动力学方程具有非仿射非线性特性. 通过人工平动点处线性化获得的线性系统可完成太阳帆航天器轨道保持控制器的分析与设计. 由于线性近似模型为有误差模型, 存在近似有效范围约束, 表现为轨道高度约束和姿态角幅值约束. 本文研究了姿态角幅值约束对线性近似模型有效性的影响, 通过计算给出满足近似误差要求的姿态角幅值约束. 当控制输入存在幅值约束时, 控制器轨道修正能力受到束缚. 通过研究姿态角幅值约束下的最大允许入轨误差, 设计了最大允许入轨误差下线性二次型调节器(LQR)用于轨道保持控制, 并将控制器应用于太阳帆日地三体系统非线性模型中, 实现了日地人工L1点Lissajous轨道最大允许入轨误差的控制收敛和良好精度下的轨道保持控制.

     

  • [1] Leipold M, Seboldt W, Lingner S, et al. Mercury sun-synchronous polar orbiter with a solar sail[J]. Acta Astron., 1996, 39(1-4): 143-151
    [2] Leipold M. To the Sun and Pluto with solar sails and micro-sciencecraft[J]. Acta Astron., 1999, 45(4):549-555
    [3] Hughes G W, Macdonald M, McInnes C R, et al. Analysis of a solar sail mercury sample return mission[C]//55th International Astronautical Congress. Vancouver: 2004, IAC-04-S.2.b.08
    [4] Macdonald M, McInnes C R. A near-term roadmap for solar sailing[C]//55th International Astronautical Congress. Vancouver: 2004, IAC-04-U.1.09
    [5] Howell K C, Guzman J J. Spacecraft trajectory design in the context of a coherent restricted four-body problem with application to the MAP mission[C]//International Astronautical Congress 51st. Rio de Janeiro: IAF, 2000. Paper 00-A.5.06
    [6] McInnes C R, McDonald A, Si mmons J, MacDonald E. Solar Sail parking in restricted three-body system[J]. J. Guid. Control Dynam., 1994, 17(2):399-406
    [7] Baoyin Hexi, McInnes C R. Solar Sail Equilibria in the Elliptical Restricted Three-Body Problem[J]. J. Guid. Control Dyn., 2006, 29(3):538-543
    [8] Baoyin Hexi, McInnes C R. Solar sail halo orbits at the Sun-Earth artificial L1 point[J]. Celest. Mech. Dyn. Astron., 2006, 94(2):155-171
    [9] Hou Xiyun, Liu Lin. On orbit control of spacecrafts with solar sail around the Earth-Moon collinear libration point[J]. J. Astron., 2009, 30(6):2250-2257. In Chinese (侯锡云, 刘林. 利用太阳帆定点探测器在地-月系共线平动点附近的探讨[J]. 宇航学报, 2005, 30(6):2250-2257)
    [10] Qian Hang, Zheng Jianhua, Yu Jianzheng, Gao Dong, Dynamics and Control of Displaced Orbits for Solar Sail Spacecraft[J]. Chin. J. Space Sci., 2013, 33(4):458-464. In Chinese (钱航,郑建华,于锡峥,高东. 太阳帆航天器悬浮轨道动力学与控制[J]. 空间科学学报, 2013, 33(4):458-464)
    [11] McInnes C R. Artificial Lagrange points for a non-perfect solar sail[J]. J. Guid. Control Dyn., 1999, 22(1):185-187
    [12] Farquhar R. Limit-cycle analysis of a controlled libration-point satellite[J]. J. Astron. Sci., 1970, 17(5):267-291
    [13] Forward R L. Satellite-a spacecraft that does not orbit[J]. J. Spacecr,, 1991, 28(5):606-611
    [14] Bookless J, McInnes C R. Control of lagrange point orbits using solar sail propulsion[J]. Acta Astron., 2008, 62(2): 159-176
    [15] Biggs J D, McInnes C R, Waters T. Stabilizing periodic orbits above the elliptic plane in the solar sail 3-body probe[C]//59th International Astronautical Congress. Glasgow, Scotland: IAC, 2008, IAC-08.C1.5.12
    [16] Waters T J, McInnes C R. Invariant manifolds and orbit control in the solar sail three-body problem[J]. J. Guid. Control Dyn., 2008, 31(3):554-562
    [17] Khalil H K, Grizzle J W. Nonlinear Systems[M]. Upper Saddle River: Prentice Hall, 2002
    [18] Waters T J, McInnes C R. Invariant manifolds and orbit control in the solar sail three-body problem[J]. J. Guid. Control Dyn., 2008, 31(3):554-562
    [19] Wie Bong. Space Vehicle Dynamics and Control[M]. Tempe, Arizona: AIAA Education Series, 1998:249-255
    [20] Lawrence D, Piggott S. Solar Sailing Trajectory Control for Sub-L1 Station keeping[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit 2004. Rhode Island: AIAA, 2004: 2004-5014
  • 加载中
计量
  • 文章访问数:  1058
  • HTML全文浏览量:  55
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-04
  • 修回日期:  2014-06-22
  • 刊出日期:  2014-11-15

目录

    /

    返回文章
    返回