留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地磁场磁力线可视化种子点选取的磁场强度线积分等分算法

高广大 胡晓彦 钟佳 邹自明

高广大, 胡晓彦, 钟佳, 邹自明. 地磁场磁力线可视化种子点选取的磁场强度线积分等分算法[J]. 空间科学学报, 2016, 36(2): 147-152. doi: 10.11728/cjss2016.02.147
引用本文: 高广大, 胡晓彦, 钟佳, 邹自明. 地磁场磁力线可视化种子点选取的磁场强度线积分等分算法[J]. 空间科学学报, 2016, 36(2): 147-152. doi: 10.11728/cjss2016.02.147
GAO Guangda, HU Xiaoyan, ZHONG Jia, ZOU Ziming. Seed Point Selection through Equal Line Integral of Magnetic Field Intensity Algorithm for Visualization of Geomagnetic Field[J]. Chinese Journal of Space Science, 2016, 36(2): 147-152. doi: 10.11728/cjss2016.02.147
Citation: GAO Guangda, HU Xiaoyan, ZHONG Jia, ZOU Ziming. Seed Point Selection through Equal Line Integral of Magnetic Field Intensity Algorithm for Visualization of Geomagnetic Field[J]. Chinese Journal of Space Science, 2016, 36(2): 147-152. doi: 10.11728/cjss2016.02.147

地磁场磁力线可视化种子点选取的磁场强度线积分等分算法

doi: 10.11728/cjss2016.02.147
基金项目: 中国科学院空间科学科技领域云建设与应用项目资助(XXH12503-05-08)
详细信息
    通讯作者:

    邹自明,E-mail:mzou@nssc.ac.cn

  • 中图分类号: P352

Seed Point Selection through Equal Line Integral of Magnetic Field Intensity Algorithm for Visualization of Geomagnetic Field

  • 摘要: 将磁力线按流线进行绘制是地磁场可视化的通用方法. 磁力线种子点的选取 决定了绘制磁力线的疏密, 其疏密程度能否真实反映地磁场强度分布是评价地 磁场可视化效果的关键. 基于磁经圈均匀角度种子点选取算法绘制 的磁力线通常不能客观反映地磁场强度的空间分布, 针对这一不足, 提出一种等分磁场强 度线积分的磁力线种子点选取算法. 利用该算法对地磁场IGRF模型和T96模型 描述的地磁内外源场进行可视化绘制, 对磁力线追踪结果中出现的冗余磁力线 进行过滤, 统计分析了绘制磁力线的空间分布与地磁场强度空间分布的相关性, 结果表明该算法能够较好地实现对地磁场的可视化.

     

  • [1] TSYGANENKO N A. A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations[J].J. Geophys. Res.: Space Phys., 2002, 107(A8):SMP10-1-SMP10-17. DOI: 10.1029/2001JA000220
    [2] HE Huan. Study on Key Technologies for Visualization of Space Environment[D]. Beijing: University of Chinese Academy of Sciences, 2009 (贺欢. 空间环境可视化关键技术研究[D]. 北京: 中国科学院研究生院, 2009)
    [3] ZHONG Jia, ZOU Ziming. The algorithm of density visualization of magnetic flux lines based on geomagnetic dipole field[J]. Prog. Geophys., 2014, 29(6):2614-2619
    [4] BAI Chunhua, XU Wenyao, KANG Guofa. Earth's main magnetic field model[J]. Prog. Geophys., 2008, 23(4): 1045-1057
    [5] XU Wenyao, DU Aimin, BAI Chunhua. Magnetic field model of the Earth's magnetosphere[J]. Prog. Geophys., 2008, 23(1):14-24
    [6] WANLISS J A, SHOWALTER K M. High-resolution global storm index: Dst versus SYM-H[J]. J. Geophys. Res., 2006, 111, A02202. DOI: 10.1029/2005JA011034
    [7] XU Wenyao. Data organization in geomagnetism and space physics and relevant coordinate systems[J]. Prog. Geophys., 2007, 21(4):1043-1060
    [8] LI Qingyang, WANG Nengchao, YI Dayi. Numerical Integration[M]. Beijing: Tsinghua University Press, 2001 (李庆扬, 王能超, 易大义. 数值分析[M]. 北京: 清华大学出版社, 2001)
    [9] KNIGHT D, MALLINSON G. Visualizing unstructured flow data using dual stream functions[J]. IEEE Trans. Visual. Comp. Graph., 1996, 2(4):355-363
    [10] KENWRIGHT D N, MALLINSON G D. A 3-d streamline tracking algorithm using dual stream functions[C]//Proceedings of the 3rd Conference on Visualization'92. Boston: IEEE Computer Society Press, 1992:62-68
    [11] TSYGANENKO N A. Effects of the solar wind conditions in the global magnetospheric configurations as deduced from data-based field models[C]//International Conference on Substorms. Paris: European Space Agency, 1996: 181
  • 加载中
计量
  • 文章访问数:  1546
  • HTML全文浏览量:  79
  • PDF下载量:  1175
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-18
  • 修回日期:  2015-05-13
  • 刊出日期:  2016-03-15

目录

    /

    返回文章
    返回