留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁暴期间全球TEC扰动特性分析

杨鼎 方涵先 杨升高 汪四成

杨鼎, 方涵先, 杨升高, 汪四成. 磁暴期间全球TEC扰动特性分析[J]. 空间科学学报, 2017, 37(5): 524-530. doi: 10.11728/cjss2017.05.524
引用本文: 杨鼎, 方涵先, 杨升高, 汪四成. 磁暴期间全球TEC扰动特性分析[J]. 空间科学学报, 2017, 37(5): 524-530. doi: 10.11728/cjss2017.05.524
YANG Ding, FANG Hanxian, YANG Shenggao, WANG Sicheng. Statistical Study on the Response of TEC to Geomagnetic Stormsormalsize[J]. Chinese Journal of Space Science, 2017, 37(5): 524-530. doi: 10.11728/cjss2017.05.524
Citation: YANG Ding, FANG Hanxian, YANG Shenggao, WANG Sicheng. Statistical Study on the Response of TEC to Geomagnetic Stormsormalsize[J]. Chinese Journal of Space Science, 2017, 37(5): 524-530. doi: 10.11728/cjss2017.05.524

磁暴期间全球TEC扰动特性分析

doi: 10.11728/cjss2017.05.524
基金项目: 

国家自然科学基金项目资助(40505005)

详细信息
    作者简介:

    杨鼎,E-mail:yangdhover@sina.com

  • 中图分类号: P352

Statistical Study on the Response of TEC to Geomagnetic Stormsormalsize

  • 摘要:

    磁暴期间白天电离层总电子含量(TEC)大幅度扰动.TEC扰动与磁暴发生时的世界时(UT)有关.利用7年的数据对TEC对磁暴的响应进行统计研究.结果显示,磁暴期间白天TEC增大明显,且在午后TEC的增大比例有一个高峰.在18:00UT-04:00UT,南美地区与其他地区相比TEC增长较大,这可能与白天的光照有关.为了研究TEC变化与磁暴的关系,结合同样时间段的Dst指数,把TEC数据分为磁暴日(Dst<-100nT)和平静日(Dst>-50nT).研究发现,将TEC前移2h,低纬日侧地区TEC增大值随着世界时的变化与Dst变化的负相关性较好,相关系数为-0.75.在中纬度地区,将TEC扰动前移1h,相关系数为-0.61.这可能是行进式大气扰动携带着赤道向的子午风,由极区向低纬传播引起.可以认为,TEC的变化可能是由磁暴引起的.在高纬地区,TEC增大值随着世界时的变化与Dst变化的相关性较差.这可能是由于太阳高度角较低,光辐射通量较小,导致电子密度的增加不明显.

     

  • [1] IMMEL T J, CROWLEY G, CRAVEN J D, et al. Dayside enhancements of thermospheric O/N2 following magnetic storm onset[J]. J. Geophys. Res., 2001, 106 (A8):15471-15488
    [2] PRÖLSS G W. Ionospheric storms at mid-latitude:a short review[M]//Midlatitude Ionospheric Dynamics and Disturbances. Washington DC:AGU, 2008:9-24
    [3] LANZEROTTI L J, COGGER L L, MENDILLO M. Latitude dependence of ionosphere total electron content:observations during sudden commencement storms[J]. J. Geophys. Res., 1975, 80 (10):1287-1306
    [4] FOSTER J C. Storm-time plasma transport at middle and high latitudes[J]. J. Geophys. Res., 1993, 98 (A2):1675-1689
    [5] JONES K L, RISHBETH H. The origin of storm increases of mid-latitude F-layer electron concentration[J]. J. Atmos. Terr. Phys., 1971, 33 (3):391-401
    [6] ANDERSON D N. Modeling the midlatitude F-region ionospheric storm using east-west drift and a meridional wind[J]. Planet. Space Sci., 1976, 24 (1):69-77
    [7] HUNSUCKER R D, HARGREAVES J K. The High-latitude Ionosphere and its Effects on Radio Propagation[M]. Cambridge:Cambridge University Press, 2002
    [8] ROBLE R G. Studies in Geophysics:the Upper Atmosphere and Magnetosphere[M]. Washington D C:National Academy of Sciences, 1977
    [9] FULLER-ROWELL T J, REES D, RISHBETH H, et al. Modelling of composition changes during F-region storms:a reassessment[J]. J. Atmos. Terr. Phys., 1991, 53 (6/7):541-550
    [10] HUBA J D, JOYCE G, SAZYKIN S, et al. Simulation study of penetration electric field effects on the low-to mid-latitude ionosphere[J]. Geophys. Res. Lett., 2005, 32 (23):L23101
    [11] MANNUCCI A J, WILSON B D, YUANDN, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Sci., 1998, 33 (3):565-582
    [12] KINTNER P M, LEDVINA B, DE PAULAE, et al. The advantages of cheap, connected, and plentiful GNSS observations[C]//American Geophysical Union, Fall Meeting 2003. Washington, DC:AGU, 2003
    [13] XIA Chunliang, WAN Weixing, YUAN Hong, et al. Analysis of the intense magneticstorm of July, 2000 and of October, 2003 using the technique for nowcasting of GPS TEC data[J]. Chin. J. Space Sci., 2005, 25 (4):259-266(夏淳亮, 万卫星, 袁洪, 等. 2000年7月和2003年10月大磁暴期间东亚地区中低纬电离层的GPS TEC的响应研究[J].空间科学学报, 2005, 25 (4):259-266)
    [14] JAKOWSKI N, STANKOV S M, SCHLUETER S, et al. On developing a new ionospheric perturbation index for space weather operations[J]. Adv. Space Res., 2006, 38 (11):2596-2600
    [15] MENDILLO M. Storms in the ionosphere:patterns and processes for total electron content[J]. Rev. Geophys., 2006, 44 (4):RG4001
    [16] MENDILLO M, KLOBUCHAR J A. Total electron content:synthesis of past storm studies and needed future work[J]. Radio Sci., 2006, 41 (5):RS5S02
    [17] XU Jisheng, ZHU Jie, CHENG Guanghui. GPS observations of ionospheric effects of the major storm of Nov.7-10, 2004[J]. Chin. J. Geophys., 2006, 49 (4):950-956
    [18] ERICKSON P J, GONCHARENKO L P, NICOLLS M J, et al. Dynamics of North American sector ionospheric and thermospheric response during the November 2004 superstorm[J]. J. Atmos. Sol-Terr. Phys., 2009, 72 (4):292-301. DOI: 10.1016/j.jastp.2009.04.001
    [19] BALAN N, SHIOKAWA K, OTSUKA Y, et al. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes[J]. J. Geophys. Res., 2010, 115 (A2):A02304. DOI: 10.1029/2009JA014515
    [20] DENG Zhongxin, LIU Ruiyuan, ZHEN Weimin, et al. Study on the ionospheric TEC storms over China[J]. Chin. J. Geophys., 2012, 55 (7):2177-2184
    [21] BUONSANTO M J. Ionospheric storms review[J]. Space Sci. Rev., 1999, 88 (3/4):563-601
    [22] IMMEL T J, MANNUCCI A J. Ionospheric redistribution during geomagnetic storms[J]. J. Geophys. Res., 2013, 118 (12):7928-7939
  • 加载中
计量
  • 文章访问数:  1387
  • HTML全文浏览量:  63
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-21
  • 修回日期:  2017-05-08
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回