留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多方向μ介子通量一致性特征研究

薛炳森 苍中亚 张吉龙

薛炳森, 苍中亚, 张吉龙. 多方向μ介子通量一致性特征研究[J]. 空间科学学报, 2017, 37(6): 667-674. doi: 10.11728/cjss2017.06.667
引用本文: 薛炳森, 苍中亚, 张吉龙. 多方向μ介子通量一致性特征研究[J]. 空间科学学报, 2017, 37(6): 667-674. doi: 10.11728/cjss2017.06.667
XUE Bingsen, CANG Zhongya, ZHANG Jilong. Study of Multi-directional muon flux in geomagnetic storm prediction[J]. Chinese Journal of Space Science, 2017, 37(6): 667-674. doi: 10.11728/cjss2017.06.667
Citation: XUE Bingsen, CANG Zhongya, ZHANG Jilong. Study of Multi-directional muon flux in geomagnetic storm prediction[J]. Chinese Journal of Space Science, 2017, 37(6): 667-674. doi: 10.11728/cjss2017.06.667

多方向μ介子通量一致性特征研究

doi: 10.11728/cjss2017.06.667
基金项目: 

国家自然科学基金项目资助(11575204)

详细信息
    作者简介:

    薛炳森,xuebs@cma.gov.cn

  • 中图分类号: P352

Study of Multi-directional muon flux in geomagnetic storm prediction

  • 摘要: 通过地面μ介子望远镜可以探测不同方向到达的宇宙线通量,得到从外空间入射的宇宙线受到不均匀结构的调制情况,判断CME的特征.通过分析,发现大地磁暴前Nagoya台站东向和南向的探测数据存在固定的2h时间差,认为这是由两个入射方向的宇宙线粒子先后穿越CME结构引起的.分别计算了两个方向相同时间和南向相位后移2h后通量探测数据的相关系数,以及两种情形下通量差的变化幅度,定量描述了CME接近地球过程中两个方向通量的相关特征.通过比较发现,CME接近地球过程中,经过相位变换的两个方向的相关系数明显高于未经变换的情况,经过相位变换的两个方向的通量差幅度明显小于未经变换的情况;CME到达地球后,两种情形的相关系数和通量差幅度则趋于相同.对2003-2005年Kp=9的地磁暴事件的分析均发现了这种现象.对2006年12月14日大地磁暴前的μ介子通量特征进行了分析,也完全符合上述特征.

     

  • [1] JOSELYN J A. Geomagnetic activity forecasting:the sta-te of the art[J]. Rev. Geophys., 1995, 33(3):383-401
    [2] KUDELA K, STORINI M, HOFER M, et al. Cosmic rays in relation to space weather[J]. Space Sci. Rev., 2000, 93(1/2):153-174
    [3] RUFFOLO D. Transport and acceleration of energetic charged particles near an oblique shock[J]. Astrophys. J., 1999, 515(2):787-800
    [4] DORMAN L I, IUCCI N, VILLORESI G. The use of cosmic rays for continuous monitoring and prediction of some dangerous phenomena for the earth's civilization[J]. Astrophys. Space Sci., 1993, 208(1):55-68
    [5] DORMAN L I, IUCCI N, VILLORESI G. Possible monitoring of space processes by cosmic rays[C]//Proceedings of the 23rd International Cosmic Ray Conference. Alberta, Canada:University of Calgary, 1993:695-698
    [6] DORMAN L I, IUCCI N, VILLORESI V. The nature of cosmic ray Forbush-decrease and precursory effec-ts[C]//Proceedings of the 24th International Cosmic Ray Conference. Rome, Italy:International Union of Pure and Applied Physics, 1995:892-895
    [7] DORMAN L I, PUSTIL'NIK L A, STERNLIEB A, et al. Monitoring and forecasting of great solar proton events using the neutron monitor network in real time[J]. IEEE Trans. Plasma Sci., 2004, 32(4):1478-1488
    [8] SAVIAN J F, DA SILVA M R, VIEIRA L E A, et al. Forbush decreases for 2001-2004 observed with low la-titude muon telescopes of Brazilian SSO observatory[J]. Geophys. Res. Abstr., 2005, 7:340
    [9] MUNAKATA K, BIEBER J W, YASUE S I, et al. Precursors of geomagnetic storms observed by the muon detector network[J]. J. Geophys. Res., 2000, 105(A12):27457-27468
    [10] LE Guiming, YE Zonghai, YU Shaohua, et al. Wavelet analysis of the cosmic ray intensities at Guangzhou muon station during January 7-11, 1997[J]. Chin. J. Geophys., 2004, 47(2):190-194
    [11] WANG Jing, LIU Siqing, XUE Bingsen, et al. Anisotropy analyses of cosmic ray before the geomagnetic storm on Sept. 24, 1998[J]. Chin. J. Space Sci., 2009, 29(5):495-501
    [12] KANE R P. Directional muon telescopes not useful for estimating the magnitudes of Forbush decreases and geo-magnetic storms[J]. Indian J. Radio Space Phys., 2011, 40:76-84
    [13] SABBAH I, TOKUMARU S M, DULDIG M L, et al. First observed coronal mass ejection from the middle east using cosmic rays[J]. Kuwait J. Sci. Eng., 2010, 37(2):43-61
    [14] DE MENDONCA R R S, RAULIN J P, ECHER E, et al. Analysis of atmospheric pressure and temperature effects on cosmic ray measurements[J]. J. Geophys. Res.:Space Phys., 2013, 118(4):1403-1409
  • 加载中
计量
  • 文章访问数:  1175
  • HTML全文浏览量:  113
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-21
  • 修回日期:  2017-05-08
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回