留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型空间可展薄膜结构动力学仿真分析

张华 刘汉武 李东颖 彭福军

张华, 刘汉武, 李东颖, 彭福军. 大型空间可展薄膜结构动力学仿真分析[J]. 空间科学学报, 2018, 38(1): 101-108. doi: 10.11728/cjss2018.01.101
引用本文: 张华, 刘汉武, 李东颖, 彭福军. 大型空间可展薄膜结构动力学仿真分析[J]. 空间科学学报, 2018, 38(1): 101-108. doi: 10.11728/cjss2018.01.101
ZHANG Hua, LIU Hanwu, LI Dongying, PENG Fujun. Study of Dynamics Simulation on Large Space Deployable Membrane Structuresormalsize[J]. Chinese Journal of Space Science, 2018, 38(1): 101-108. doi: 10.11728/cjss2018.01.101
Citation: ZHANG Hua, LIU Hanwu, LI Dongying, PENG Fujun. Study of Dynamics Simulation on Large Space Deployable Membrane Structuresormalsize[J]. Chinese Journal of Space Science, 2018, 38(1): 101-108. doi: 10.11728/cjss2018.01.101

大型空间可展薄膜结构动力学仿真分析

doi: 10.11728/cjss2018.01.101
基金项目: 

上海市自然科学基金项目(16ZR1436200)和国家高性能计算重点专项项目(2016YFB0201604,2016YFB0201600)共同资助

详细信息
    作者简介:

    张华,E-mail:ases_zhang@163.com

  • 中图分类号: V476

Study of Dynamics Simulation on Large Space Deployable Membrane Structuresormalsize

  • 摘要: 相对于传统的航天器平面刚性天线结构,柔性可展薄膜结构因其质量轻、收拢体积小等优点成为大型天线的重要发展方向,特别是在天基合成孔径雷达(SAR)天线高分辨率对地观测技术领域具有广阔的应用前景.为掌握其在轨结构动力学特性,基于温度-结构预应力导入方法建立了大型空间可展薄膜结构的动力学模型,分析了可展薄膜结构的动力学性能参数,同时基于建立的动力学模型开展了可展薄膜结构的优化设计研究,得到主要设计参数对可展薄膜结构动力学性能参数的影响权重,为其工程化实施奠定了理论研究基础.

     

  • [1] LIU Rongqiang, GUO Hongwei, DENG Zongquan. Space cable-Strut deployable articutlated mast design and experimental study[J]. J. Astron., 2009, 30(1):315-320 (刘荣强, 郭宏伟, 邓宗全. 空间索杆铰接式伸展臂设计与试验研究[J]. 宇航学报, 2009, 30(1):315-320)
    [2] ZHANG Yiqun, YANG Dongwu, DU Jingli. Deployment design for reducing impact on the hoop truss deployable space antenna[J]. J. Astron., 2011, 32(5):1205-1210 (张逸群, 杨东武, 杜敬利. 周边桁架可展开天线小冲击展开过程设计[J]. 宇航学报, 2011, 32(5):1205-1210)
    [3] CASSAPAKIS C, THOMAS M. Inflatable structures technology development overview[R]. AIAA-95-3738. Tustin, CA: L,'Garde, Inc, 1995
    [4] (马小飞, 宋燕平, 韦娟芳. 充气式空间可展开天线结构概述[J]. 空间电子技术, 2006, 3(3):10-15) 3(3):10-15

    MA Xiaofei, SONG Yanping, WEI Juanfang. Overview of inflatable space deployable antenna structures[J]. Space Electron. Technol., 2006, 3(3):10-15
    [5] XIAN Kuicheng, PENG Fujun. The study of shape control for large space membrane structures[J]. Noise Vib. Cont., 2009, 29(6):97-104 (咸奎成, 彭福军. 大尺寸空间薄膜结构形状控制研究[J]. 噪声与振动控制, 2009, 29(6):97-104)
    [6] LIU Wang. Research on Nonlinear Dynamic Modeling and Surface Error Characteristics of Spaceborne Large Cable-Network Antenna Structures[D]. Changsha: National University of Defense Technology, 2013 (刘望. 星载大型索网天线结构非线性动力学建模及形面误差特性研究[D]. 长沙: 国防科学技术大学, 2013)
    [7] LEI Zhen. Pretension design of large space cable-net deployable antennas[C]//Proceedings of the 2011 Academic Conference on Mechanical Electronics. Xi'an: China Electronic Society Electronic Mechanical Engineering Branch, 2011 (雷震. 星载可展天线索网预张力设计[C]//2011年机械电子学学术会议论文集. 西安: 中国电子学会电子机械工程分会, 2011)
    [8] WANG Jie, LI Dongxu, JIANG Jianping, et al. Thermal analysis of large deployable truss support membrane structure on satellite[J]. Bull. Surv. Mapp., 2014(S1):9-14 (王杰, 李东旭, 蒋建平, 等. 星载大型可展桁架式薄膜结构在轨热分布特性研究[J]. 测绘通报, 2014(S1):9-14)
    [9] STRAUBEL M, SICKINGER C, LANGLOIS S. Trade-off on large deployable membrane antennas[C]//Proceedings of the 30th ESA Antenna Workshop. Noordwijk, Netherlands: ESA, 2008
    [10] LI Chunsheng WANG Weijie WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. J. Electron. Inf. Technol., 2016, 38(1):229-240 (李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1):229-240)
    [11] MINI F, SCIALINO G L, MILANO M, et al. European large deployable antenna: development status and applications[C]//Proceedings of the First European Conference on Antennas and Propagation. Nice, France: IEEE, 2006:1-8
    [12] HIGUCHI K, KISHIMOTO N, MEGURO A, et al. Structure of high precision large deployable reflector for space VLBI (Very Long Baseline Interferometry)[C]//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, California: AIAA
    [13] WONG Y W, PELLEGRINO S. Prediction of wrinkle amplitude in square solar sails[C].//Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk, VA, USA: AIAA.
    [14] XIAO Weiwei, CHEN Wujun, FU Gongyi. Pre-stress introduction effects and influence factors investigation for the space planar film reflect-array[J]. J. Astron., 2010, 31(3):845-849 (肖薇薇, 陈务军, 付功义. 空间薄膜阵面预应力导入效应及影响因素[J]. 宇航学报, 2010, 31(3):845-849)
    [15] HU Yu. Analysis of Pre-Stress and Structural Characteristic of Space Film Reflect-Array[D]. Shanghai: Shanghai Jiao Tong University, 2012 (胡宇. 空间薄膜阵面预应力及结构特性分析[D]. 上海: 上海交通大学, 2012)
    [16] LIU Chong, LI Yuyu, BAO Hong, et al. Natural frequencies of pre-tensioned membrane structure with different boundary geometrical parameters[J]. J. Vib. Shock, 2015, 34(20):198-202 (刘充, 李玉宇, 保宏, 等. 边界几何参数对空间平面张拉膜结构固有频率影响研究[J]. 振动与冲击, 2015, 3420:198-202)
    [17] WANG Jun, ZHAO Huandi, CHEN Lifen. Effects of the initial deformation on the dynamic response of local nonlinear systems[J]. J. Dyn. Cont., 2015, 13(3):188-193 (王珺, 赵环迪, 陈力奋. 预变形对非线性结构响应特征的影响[J]. 动力学与控制学报, 2015, 13(3):188-193)
    [18] SUZUKI T, HANGAI Y. Shape analysis of differently stressed surfaces by the finite element method[C]//Proceedings of IASS-CSCS International Congress. Toronto, Canada: IASS, 1991
    [19] ZHANG Hua, OUYANG Bin, SHAN Jian. Temperature effect study on pretensioned cable-membrane structures[J]. Arch. Technol., 2009, 40(12):1106-1108 (张华, 欧阳斌, 单建. 预应力索膜结构的温度效应研究[J]. 建筑技术, 2009, 40(12):1106-1108)
  • 加载中
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  71
  • PDF下载量:  848
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-13
  • 修回日期:  2017-10-09
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回