留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次暴雨激发平流层重力波的卫星观测与数值模拟

孙睿 姚志刚 韩志刚 赵增亮 崔新东 严卫

孙睿, 姚志刚, 韩志刚, 赵增亮, 崔新东, 严卫. 一次暴雨激发平流层重力波的卫星观测与数值模拟[J]. 空间科学学报, 2018, 38(4): 469-481. doi: 10.11728/cjss2018.04.469
引用本文: 孙睿, 姚志刚, 韩志刚, 赵增亮, 崔新东, 严卫. 一次暴雨激发平流层重力波的卫星观测与数值模拟[J]. 空间科学学报, 2018, 38(4): 469-481. doi: 10.11728/cjss2018.04.469
SUN Rui, YAO Zhigang, HAN Zhigang, ZHAO Zengliang, CUI Xindong, YAN Wei. Numerical Simulation of Stratospheric Gravity Waves Induced by a Rainstorm[J]. Chinese Journal of Space Science, 2018, 38(4): 469-481. doi: 10.11728/cjss2018.04.469
Citation: SUN Rui, YAO Zhigang, HAN Zhigang, ZHAO Zengliang, CUI Xindong, YAN Wei. Numerical Simulation of Stratospheric Gravity Waves Induced by a Rainstorm[J]. Chinese Journal of Space Science, 2018, 38(4): 469-481. doi: 10.11728/cjss2018.04.469

一次暴雨激发平流层重力波的卫星观测与数值模拟

doi: 10.11728/cjss2018.04.469
基金项目: 

国家自然科学基金项目(41575031)和中国博士后基金项目(2015M580124)共同资助

详细信息
    作者简介:

    孙睿,E-mail:429661225@qq.com

  • 中图分类号: P403

Numerical Simulation of Stratospheric Gravity Waves Induced by a Rainstorm

  • 摘要: 针对卫星Aqua/AIRS观测到的与2011年7月25日山东省乳山市特大暴雨相伴的一次平流层重力波过程,利用中尺度数值模式WRF进行暴雨诱发平流层重力波的数值模拟.对模式输出的垂直速度场和温度扰动场的分析表明,暴雨在平流层内的弧状波结构主要集中在降水云系东侧,水平影响范围大于1000km,且随着高度的增加,圆弧状结构趋于闭合,波动能量显著增强.此外,对垂直速度剖面结构分析表明,受高空东风和风切变的影响,重力波在上传过程中逆着背景风场向东传输,不同高度波动形态各异.基于快速傅里叶变换(FFT)的功率谱分析结果表明,此次暴雨激发的平流层重力波在35km高度的周期为7~20h,水平波长约为1000km,垂直波长为5~10km.通过分析动量通量的垂直输送,定量反映出重力波上传过程中的动力学变化特征.

     

  • [1] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):1003
    [2] ALEXANDER M J, PFISTER L. Gravity wave momentum flux in the lower stratosphere over convection[J]. Geophys. Res. Lett., 1995, 22(15):2029-2032
    [3] LANE T P, SHARMAN R D, CLARK T L, et al. An investigation of turbulence generation mechanisms above deep convection[J]. J. Atmos. Sci., 2003, 60(10):1297-1321
    [4] HUNG R J, TSAO Y D, LIU J N, et al. Lower thermospheric density fluctuations during the time period of Typhoon Dinah[C]//Proceedings of the 27th Aerospace Sciences Meeting. Reno, NV:AIAA, 1989
    [5] TU Jiannan. The coupling between atmospheric waves and electron density perturbations[J]. Chin. J. Space Sci., 1993, 13(3):190-195(涂剑南. 大气重力波与电子密度扰动的耦合[J]. 空间科学学报, 1993, 13(3):190-195)
    [6] MENDILLO M, RISHBETH H, ROBLE R G, et al. Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere[J]. J. Atmos. Solar Terr. Phys., 2002, 64(18):1911-1931
    [7] BERES J H, GARCIA R R, BOVILLE B A, et al. Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM)[J]. J. Geophys. Res., 2005, 110(D10):D10108
    [8] KIM S Y, CHUN H Y, WU D L. A study on stratospheric gravity waves generated by Typhoon Ewiniar:numerical simulations and satellite observations[J]. J. Geophys. Res., 2009, 114(D22):D22104
    [9] EVAN S, ALEXANDER J M, DUDHIA J. WRF simulations of convectively generated gravity waves in opposite QBO phases[J]. J. Geophys. Res., 2012, 117(D12):D12117
    [10] KIM S Y, CHUN H Y, BAIK J J. A numerical study of gravity waves induced by convection associated with Typhoon Rusa[J]. Geophys. Res. Lett., 2005, 32(24):L24816
    [11] KUESTER M A, ALEXANDER M J, RAY E A. A model study of gravity waves over hurricane Humberto (2001)[J]. J. Atmos. Sci., 2008, 65(10):3231-3246
    [12] GRIMSDELL A W, ALEXANDER M J. Model study of waves generated by convection with direct validation via satellite[J]. J. Atmos. Sci., 2010, 67(5):1617-1631
    [13] JEWTOUKOFF V, PLOUGONVEN R, HERTZOG A. Gravity waves generated by deep tropical convection:estimates from balloon observations and mesoscale simulations[J]. J. Geophys. Res., 2013, 118(17):9690-9707
    [14] CHEN Dan, CHEN Zeyu, LÜ Daren. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005[J]. Sci. China Earth Sci., 2012, 55(4):602-610(陈丹, 陈泽宇, 吕达仁. 台风"麦莎" (Matsa)诱发平流层重力波的数值模拟[J]. 中国科学:地球科学, 2011, 41(1):1-9)
    [15] HONG Jun, YAO Zhigang, HAN Zhigang, et al. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the typhoon Muifa[J]. Chin. J. Geophys., 2015, 58(7):2283-2293(洪军, 姚志刚, 韩志刚, 等. 台风"梅花"诱发平流层重力波的数值模拟与AIRS观测[J]. 地球物理学报, 2015, 58(7):2283-2293)
    [16] YUAN Hong, WAN Weixing, LIANG Jun. The statistical sources distribution of TIDs observed in central China[J]. Chin. J. Geophys., 1997, 40(2):164-169(袁洪, 万卫星, 梁君. 中国中部地区TID激发源的统计分布[J]. 地球物理学报, 1997, 40(2):164-169)
    [17] XU Guirong, WAN Weixing, NING Baiqi. Effects of extreme heavy rainfall in the troposphere on the ionosphere[J]. Chin. J. Space Sci., 2005, 25(2):104-110(徐桂荣, 万卫星, 宁百齐. 对流层特大暴雨天气对电离层变化的影响[J]. 空间科学学报, 2005, 25(2):104-110)
    [18] ZHENG Yongguang, CHEN Jiong, ZHU Peijun. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer[J]. Chin. Sci. Bull., 2008, 53(10):1574-1586(郑永光, 陈炯, 朱佩君. 中国及周边地区夏季中尺度对流系统分布及其日变化特征[J]. 科学通报, 2008, 53(4):471-481)
    [19] YAO Zhigang, ZHAO Zengliang, HAN Zhigang. Stratospheric gravity waves during summer over East Asia derived from AIRS observations[J]. Chin. J. Geophys., 2015, 58(4):1121-1134
    [20] HOFFMANN L, XUE X, ALEXANDER M J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations[J]. J. Geophys. Res., 2013, 118(2):416-434
    [21] YUE J, VADAS S L, SHE C Y, et al. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado[J]. J. Geophys. Res., 2009, 114(D6):D06104
    [22] MILLER S D, MILLS S P, ELVIDGE C D, et al. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities[J]. PNAS, 2012, 109(39):15706-15711
    [23] SMITH S M, MENDILLO M, BAUMGARDNER J, et al. Mesospheric gravity wave imaging at a subauroral site:First results from Millstone Hill[J]. J. Geophys. Res., 2000, 105(A12):27119-27130
    [24] AZEEM I, YUE J, HOFFMANN L, et al. Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere[J]. Geophys. Res. Lett., 2015, 42(19):7874-7880
    [25] XU J Y, LI Q Z, YUE J, et al. Concentric gravity waves over northern China observed by an airglow imager network and satellites[J]. J. Geophys. Res., 2015, 120:11058-11078
    [26] AUMANN H H, CHAHINE M T, GAUTIER C, et al. AIRS/AMSU/HSB on the Aqua mission:Design, science objectives, data products, and processing systems[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41(2):253-264
    [27] GONG J, WU D L, ECKERMANN S D. Gravity wave variances and propagation derived from AIRS radiances[J]. Atmos. Chem. Phys., 2012, 12(4):1701-1720
    [28] PLOUGONVEN R, ZHANG F Q. Internal gravity waves from atmospheric jets and fronts[J]. Rev. Geophys., 2014, 52(1):33-76
    [29] XU Kai, YAO Zhigang, HAN Zhigang, et al. Recent process in near-space gravity wave analysis based on satellite measurements[J]. Adv. Earth Sci., 2017, 32(1):66-74
    [30] HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon. Wea. Rev., 2004, 132(1):103-120
    [31] MLAWER E J, TAUBMAN S J, BROW P D, et al. Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 1997, 102(D14):16663-16682
    [32] DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 1989, 46(20):3077-3107
    [33] MEI Chanjuan, ZHANG Can, LI Hongjiang. Cause analysis of a torrential rainfall in Shandong Rushan on July 25, 2011[J]. Meteor. Environ. Sci., 2016, 39(3):82-89(梅婵娟, 张灿, 李宏江. 2011年"7.25"山东乳山特大暴雨成因分析[J]. 气象与环境科学, 2016, 39(3):82-89)
    [34] MONCRIEFF M W, MILLER M J. The dynamics and simulation of tropical cumulonimbus and squall lines[J]. Quart. J. Royal Meteor. Soc., 1976, 102(432):373-394
    [35] ZHANG Jianchun, WANG Haixia, TAO Zuyu. Statistical analysis of predicting skill of convective available potential energy[J]. Torr. Rain Dis., 2014, 33(3):290-296
    [36] FOVELL R, DURRAN D, HOLTON J R. Numerical simulations of convectively generated stratospheric gravity waves[J]. J. Atmos. Sci., 1992, 49(16):1427-1442
    [37] BERES J H, ALEXANDER M J, HOLTON J R. A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind[J]. J. Atmos. Sci., 2004, 61(3):324-337
    [38] CHUN H Y, BAIK J J. Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models[J]. J. Atmos. Sci., 1998, 55(21):3299-3310
    [39] SONG I S, CHUN H Y. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I:theory[J]. J. Atmos. Sci., 2005, 62(1):107-124
    [40] GELLER M A, ALEXANDER M J, LOVE P T, et al. A comparison between gravity wave momentum fluxes in observations and climate models[J]. J. Climate, 2013, 26(17):6383-6405
  • 加载中
计量
  • 文章访问数:  1337
  • HTML全文浏览量:  219
  • PDF下载量:  1671
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-04
  • 修回日期:  2018-03-05
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回