留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near Earth Vortices Driving of Field Aligned Currents Based on Magnetosphere Multiscale and Swarm Observations

ZHANG C SHEN C YANG Y Y DUNLOP M W TI S RUSSELL C T LÜHR H BURCH J L LINDQVIST P A TORBERT R B FRⅡS-CHRISTENSEN E

ZHANG C, SHEN C, YANG Y Y, DUNLOP M W, TI S, RUSSELL C T, LÜHR H, BURCH J L, LINDQVIST P A, TORBERT R B, FRⅡS-CHRISTENSEN E. Near Earth Vortices Driving of Field Aligned Currents Based on Magnetosphere Multiscale and Swarm Observations[J]. 空间科学学报, 2019, 39(1): 9-17. doi: 10.11728/cjss2019.01.09
引用本文: ZHANG C, SHEN C, YANG Y Y, DUNLOP M W, TI S, RUSSELL C T, LÜHR H, BURCH J L, LINDQVIST P A, TORBERT R B, FRⅡS-CHRISTENSEN E. Near Earth Vortices Driving of Field Aligned Currents Based on Magnetosphere Multiscale and Swarm Observations[J]. 空间科学学报, 2019, 39(1): 9-17. doi: 10.11728/cjss2019.01.09
ZHANG C, SHEN C, YANG Y Y, DUNLOP M W, TI S, RUSSELL C T, LÜHR H, BURCH J L, LINDQVIST P A, TORBERT R B, FRⅡS-CHRISTENSEN E. Near Earth Vortices Driving of Field Aligned Currents Based on Magnetosphere Multiscale and Swarm Observations[J]. Chinese Journal of Space Science, 2019, 39(1): 9-17. doi: 10.11728/cjss2019.01.09
Citation: ZHANG C, SHEN C, YANG Y Y, DUNLOP M W, TI S, RUSSELL C T, LÜHR H, BURCH J L, LINDQVIST P A, TORBERT R B, FRⅡS-CHRISTENSEN E. Near Earth Vortices Driving of Field Aligned Currents Based on Magnetosphere Multiscale and Swarm Observations[J]. Chinese Journal of Space Science, 2019, 39(1): 9-17. doi: 10.11728/cjss2019.01.09

Near Earth Vortices Driving of Field Aligned Currents Based on Magnetosphere Multiscale and Swarm Observations

doi: 10.11728/cjss2019.01.09
基金项目: 

Supported by National Natural Science Foundation of China (41874190,41231066)

详细信息
    作者简介:

    SHEN C,shenchao@hit.edu.cn

  • 中图分类号: P353

Near Earth Vortices Driving of Field Aligned Currents Based on Magnetosphere Multiscale and Swarm Observations

Funds: 

Supported by National Natural Science Foundation of China (41874190, 41231066)

More Information
    Author Bio:

    SHEN C,shenchao@hit.edu.cn

  • 摘要: A long-standing mystery in the study of Field-Aligned Currents (FACs) has been that:how the currents are generated and why they appear to be much stronger at high altitudes than in the ionosphere.Here we present two events of magnetotail FACs observed by the Magnetospheric Multiscale Spacecraft (MMS) on 1st July and 14th July 2016,to show how the Substorm Current Wedges (SCW) were formed.The results show that particles were transferred heading towards the Earth during the expansion phase of substorms. The azimuthal flow formed clockwise (counter-clockwise) vortex-like motion,and then generated downward (upward) FACs on the tailward/poleward side of the distorted field with opposite vorticity on their Earthward/equatorward side.We also analyzed the Region 1 FACs observed by the Earth Explorer Swarm spacecraft on 1st July 2016 and found that they were associated with FACs observed by MMS,although differing by a factor of 10.This difference suggests that either there was the closure of the currents at altitudes above 500 km or the currents were not strictly parallel to B and closed at longitudes away from where they were generated.

     

  • [1] BIRKELAND K. The Norwegian Aurora Polaris Expedition 1902-1903[M]. Oslo:Nabu Press, 1908
    [2] FOSTER J C, MAURICEJ S T P, ABREU V J. Joule heating at high latitudes[J]. J. Geophys. Res., 1983, 88(A6):4885-4896. DOI: 10.1029/JA088iA06p04885
    [3] LUIA T Y. Current disruption in the Earth's magnetosphere:Observations and models[J]. J. Geophys. Res., 1996, 101(A6):13067-13088. DOI: 10.1029/96JA00079
    [4] LU G, BAKER D N, MCPHERRON R L, et al. Global energy deposition during the January 1997 magnetic cloud event[J]. J. Geophys. Res., 1998, 103(A6):11685-11694. DOI: 10.1029/98JA00897
    [5] IIJIMA T. Field-aligned currents in geospace:Substance and significance[J]. Wash. Am. Geophys. Union:Geophys. Monog., 2000, 118. DOI: 10.1029/GM118p0107
    [6] STERN D P. The origins of Birkeland currents[J]. Rev. Geophys., 1983, 21(1):125-138. DOI: 10.1029/RG021i001-p00125
    [7] CHUN F K, RUSSELL C T. Field-aligned currents in the inner magnetosphere:Control by geomagnetic activity[J]. J. Geophys. Res., 1997, 102(A2):2261-2270. DOI:10. 1029/96JA01819
    [8] HAERENDELG. Disruption, ballooning or auroral avalanche-On the cause of substorms, in proceedings of the international conference on substorms (ICS-1)[J]. Eur. Space Agency Spec. Publ., 1992, ESA SP-335:417-420
    [9] SHIOKAWA K, BAUMJOHANN W, HAERENDEL G. Braking of high-speed flows in the near-Earth tail[J]. Geophys. Res. Lett., 1997, 24(10):1179-1182. DOI: 10.1029/97GL01062
    [10] HASEGAWA A, SATO T. Generation of field aligned current during substorm[J]. Dyn. Magnetos., 1979, 529542. DOI: 10.1007/978-94-009-9519-228
    [11] VASYLIUNAS V M. Fundamentals of current description[J]. Geophys. Monogr. Ser., 1984, 28:63-66
    [12] KEILING A, ANGELOPOULOS V, RUNOV A, et al. Substorm current wedge driven by plasma flow vortices:THEMIS observations[J]. J. Geophys. Res., 2009, 114(A1):A00C22. DOI: 10.1029/2009JA014114
    [13] BIRN J, HESSEM, HAERENDELG, et al. Flow braking and the substorm current wedge[J]. J. Geophys. Res., 1999, 104(A9):19895-19903. DOI: 10.1029/1999JA900173
    [14] BIRN J, RAEDER J, WANG Y L, et al. On the propagation of bubbles in the geomagnetic tail[J]. Ann. Geophys., 2004, 22:1773-1786. DOI: 10.5194/angeo-22-1773-2004
    [15] WANG C, SUN T R, GUO X C, et al. Case study of nightside magnetospheric magnetic field response to interplanetary shocks[J]. J. Geophys. Res., 2010, 115(A10). DOI: 10.1029/2010JA015451
    [16] XING X, LYONS L R, NISHIMURAY, et al. Near-Earth plasma sheet azimuthal pressure gradient and associated auroral development soon before substorm onset[J]. J. Geophys. Res., 2011, 116(A7). DOI: 10.1029/2011JA-016539
    [17] YAO Z H, PU Z Y, FU S Y, et al. Mechanism of substorm current wedge formation:THEMIS observations[J]. Geophys. Res. Lett., 2012, 39(13). DOI: 10.1029/2012-GL052055
    [18] SHI Q Q, HARTINGER M D, ANGELOPOULOS V, et al. Solar wind pressure pulse-driven magnetospheric vortices and their global consequences[J]. J. Geophys. Res. Space Phys., 2014, 119(6):4274-4280. DOI: 10.1002/2013JA019551
    [19] TIAN A M, SHEN X C, SHI Q Q, et al. Dayside magnetospheric and ionospheric responses to solar wind pressure increase:multispacecraft and ground observations[J]. J. Geophys. Res. Space Phys., 2016, 121(11):10813-10830. DOI: 10.1002/2016JA022459
    [20] ZHAO H Y, SHEN X C, TANG B B, et al. Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease[J]. J. Geophys. Res. Space Phys., 2016, 121(2):1071-1077. DOI: 10.1002/2015JA021646
    [21] ZMUDA A J, MARTIN J H, HEURING F T. Transverse magnetic disturbances at 1100 kilometers in the auroral region[J]. J. Geophys. Res., 1966, 71(21):5033-5045. DOI: 10.1029/JZ071i021p05033
    [22] ZMUDA A J, HEURING F T, MARTIN J H. Dayside magnetic disturbances at 1100 kilometers in the auroral oval[J]. J. Geophys. Res., 1967, 72(3):1115-1117. DOI: 10.1029/JZ072i003p01115
    [23] SHIOKAWA K, BAUMJOHANN W, HAERENDEL G, et al. High-speed ion flow, substorm current wedge, and multiple Pi2 pulsations[J]. J. Geophys. Res., 1998, 103(A3):4491-4507. DOI: 10.1029/97JA01680
    [24] CAO J B, YAN Chunxiao, DUNLOP Malcolm, et al. Geomagnetic signatures of current wedge produced by fast flows in a plasma sheet[J]. J. Geophys. Res., 2010, 115(A8):A08205. DOI: 10.1029/2009JA014891
    [25] SLAVIN J A, LE G, STRANGEWAY R J, et al. Space technology 5 multi-point measurements of nearEarth magnetic fields:Initial results[J]. Geophys. Res. Lett., 2008, 35(2):63-66. DOI: 10.1029/2007GL031728
    [26] MARCHAUDON A, CERISIER J C, DUNLOP M W, et al. Shape, size, velocity and field-aligned currents of dayside plasma injections:A multi-altitude study[J]. Ann. Geophys., 2009, 27:1251-1266. DOI: 10.5194/angeo-27-1251-2009
    [27] BURCH J L, MOORET E, TORBERTR B, et al. Magnetospheric multiscale overview and science objectives[J].Space Sci. Rev., 2015, 199(1-4):5-21. DOI: 10.1007/s112-14-015-0164-9
    [28] FRIIS-CHRISTENSEN E, LÜHR H, KNUDSEN D, et al. Swarm-An Earth observation mission investigating Geospace[J]. Adv. Space. Res., 2008, 41(1):210-216. DOI: 10.1016/j.asr.2006.10.008
    [29] SHEN C, LI X, DUNLOP M, et al. Analyses on the geometrical structure of magnetic field in the current sheet based on cluster measurements[J]. J. Geophys. Res., 2003, 108(A5):1168. DOI: 10.1029/2002JA009612
    [30] SHEN C, LI X, DUNLOP M, et al. Magnetic field rotation analysis and the applications[J]. J. Geophys. Res., 2007, 112(A6):A06211. DOI: 10.1029/2005JA011584
    [31] RUSSELL C T, ANDERSON B J, BAUMJOHANN W, et al. The magnetospheric multiscale magnetometers[J]. Space Sci. Rev., 2016, 199(1-4):189-256. DOI: 10.1007/s11214-014-0057-3
    [32] BOROVSKY J E, BONNELL J. The DC electrical coupling of flow vortices and flow channels in the magnetosphere to the resistive ionosphere[J]. J. Geophys. Res., 2001, 106(A12):28967-28994. DOI: 10.1029/1999JA000245
    [33] WANG C P, LYONS L R, WOLF R A, et al. Plasma sheet PV5/3 and NV and associated plasma and energy transport for different convection strengths and AE levels[J]. J. Geophys. Res., 2009, 114(A9):A00D02. DOI: 10.1029/2008JA013849
    [34] TORBERT R B, RUSSELL C T, MAGNES W, et al. The FIELDS instrument suite on MMS:Scientific objectives, measurements, and data products[J]. Space Sci. Rev., 2016, 199(1-4):105-135, DOI: 10.1007/s11214-014-0109-8
    [35] ERGUN R E, TUCKER S, WESTFALL J, et al. The axial double probe and fields signal processing for the MMS mission[J]. Space Sci. Rev., 2016, 199(1-4):167-188. DOI: 10.1007/s11214-014-0115-x
    [36] LINDQVIST P A, OLSSON G, TORBERT R B, et al. The spin-plane double probe electric field instrument for MMS[J]. Space Sci. Rev., 2016, 199(1/2/3/4):137-165. DOI: 10.1007/s11214-014-0116-9
    [37] KEPKO L, MCPHERRON R L, AMMO, et al. Substorm current wedge revisited[J]. Space Sci. Rev., 2015, 190(1-4):1-46. DOI: 10.1007/s11214-014-0124-9
    [38] HONES Jr E W, ASBRIDGE J R, BAME S J, et al. Magnetotail plasma flow measured by Vela 4A[J]. J. Geophys. Res., 1973, 78(25):5463-5476. DOI: 10.1029/JA-078i025p05463
    [39] MIYASHITA Y, MACHIDA S, KAMIDE Y, et al. A state-of-the-art picture of substorm-associated evolution of the near-Earth magnetotail obtained from superposed epoch analysis[J]. J. Geophys. Res., 2009, 114(A1). DOI: 10.1029/2008JA013225
    [40] MCPHERRON R L, HSU T S, KISSINGER J, et al. Characteristics of plasma flows at the inner edge of the plasma sheet[J]. J. Geophys. Res., 2011, 116(A5). DOI: 10.1029/2010JA015923
    [41] LUI A T Y, SPANSWICK E, DONOVAN E F, et al. A transient narrow poleward extrusion from the diffuse aurora and the concurrent magnetotail activity[J]. J. Geophys. Res., 2010, 115(A10). DOI: 10.1029/2010JA015449
    [42] IIJIMA T, POTEMRA T A. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad[J]. J. Geophys. Res., 1976, 81:2165-2174. DOI: 10.1029/JA081i013p02165
    [43] IIJIMA T, POTEMRA T A. Large-scale characteristics of field-aligned currents associated with substorms[J]. J. Geophys. Res., 1978, 83:599-615. DOI: 10.1029/JA083-iA02p00599
  • 加载中
计量
  • 文章访问数:  865
  • HTML全文浏览量:  78
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-30
  • 修回日期:  2018-06-22
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回