留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于瑞利激光雷达对格尔木地区中间层逆温层特征分析

乔帅 潘蔚琳 班超 陈磊 鱼艇

乔帅, 潘蔚琳, 班超, 陈磊, 鱼艇. 基于瑞利激光雷达对格尔木地区中间层逆温层特征分析[J]. 空间科学学报, 2019, 39(1): 84-92. doi: 10.11728/cjss2019.01.084
引用本文: 乔帅, 潘蔚琳, 班超, 陈磊, 鱼艇. 基于瑞利激光雷达对格尔木地区中间层逆温层特征分析[J]. 空间科学学报, 2019, 39(1): 84-92. doi: 10.11728/cjss2019.01.084
QIAO Shuai, PAN Weilin, BAN Chao, CHEN Lei, YU Ting. Characterization of Mesospheric Inversion Layer with Rayleigh Lidar Data over Golmud[J]. Chinese Journal of Space Science, 2019, 39(1): 84-92. doi: 10.11728/cjss2019.01.084
Citation: QIAO Shuai, PAN Weilin, BAN Chao, CHEN Lei, YU Ting. Characterization of Mesospheric Inversion Layer with Rayleigh Lidar Data over Golmud[J]. Chinese Journal of Space Science, 2019, 39(1): 84-92. doi: 10.11728/cjss2019.01.084

基于瑞利激光雷达对格尔木地区中间层逆温层特征分析

doi: 10.11728/cjss2019.01.084
基金项目: 

国家自然科学基金项目资助(41127901)

详细信息
    作者简介:

    乔帅,panweilin@mail.iap.ac.cn

  • 中图分类号: P356

Characterization of Mesospheric Inversion Layer with Rayleigh Lidar Data over Golmud

  • 摘要: 利用MARMOT (Middle Atmosphere Remote Mobile Observatory in Tibet)激光雷达对2014年7月至12月格尔木(36.25°N,94.54°E)上空的中间层逆温层MIL (Mesosphere Inversion Layer)事件进行研究分析.格尔木MIL现象的发生频率为53.8%,其中冬季(12月)发生频率最高,达76%;秋季(9-10月)较高,为60%;夏季(7-8月)发生频率较低,为29%.2014年7月至12月观测到的MIL逆温幅度主要分布在5~20K,平均逆温幅度为15.9K.秋季逆温层底部高度较高,主要分布在77~84km,冬季和夏季逆温层底部高度较低,主要分布在64~74km.逆温层底部高度平均为75.1km.逆温层的平均宽度为8.7km,由夏季到冬季呈递增趋势.

     

  • [1] MERIWETHER J W, GERRARD A J. Mesosphere inversion layers and stratosphere temperature enhancements[J]. Rev. Geophys., 2004, 42(3):1-31
    [2] SCHMIDLIN F J. Temperature inversions near 75km[J]. Geophys. Res. Lett., 1976, 3(3):173-176
    [3] LÜBKEN F J, HILLERT W, LEHMACHER G, et al. Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes and radiosondes during the DYANA campaign[J]. J. Atmos. Terr. Phys., 1994, 56(13-14):1969-1984
    [4] LEBLANC T, HAUCHECORNE A. Recent observations of mesospheric temperature inversions[J]. J. Geophys. Res.:Atmos., 1997, 102(D16):19471-19482
    [5] FADNAVIS S, BEIG G. Mesospheric temperature inversions over the Indian tropical region[J]. Ann. Geophys., 2004, 22(10):3375-3382
    [6] CHEN Linxiang, YANG Guotao, WANG Jihong, et al. Measurements of lower mesosphere inversion layers with rayleigh lidar over Beijing[J]. Chin. J. Space Sci., 2017, 37(1):75-81(陈林祥, 杨国韬, 王继红, 等. 瑞利激光雷达探测北京上空中间层低逆温层[J]. 空间科学学报, 2017, 37(1):75-81)
    [7] SHE C Y, YU J R, CHEN H. Observed thermal structure of a midlatitude mesopause[J]. Geophys. Res. Lett., 1993, 20(7):567-570
    [8] STATES R J, GARDNER C S. Influence of the diurnal tide and thermospheric heat sources on the formation of mesospheric temperature inversion layers[J]. Geophys. Res. Lett., 1998, 25(9):1483-1486
    [9] HUANG T Y, HICKEY M P, TUAN T F, et al. Further investigations of a mesospheric inversion layer observed in the ALOHA-93 Campaign[J]. J. Geophys. Res. Atmos., 2002, 107(D19):ACL 17-1-ACL 17-8
    [10] YUAN T, PAUTET P D, ZHAO Y, et al. Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and advanced mesospheric temperature mapper in Logan, Utah[J]. J. Geophys. Res.:Atmos., 2014, 119(7):3756-3769
    [11] CLANCY R T, RUSCH D W, CALLAN M T, et al. Temperature minima in the average thermal structure of the middle mesosphere (70~80km) from analysis of 40-to 92-km SME global temperature profiles[J]. J. Geophys. Res.:Atmos., 1994, 99(D9):19001-19020
    [12] GAN Q, ZHANG S D, YI F. TIMED/SABER observations of lower mesospheric inversion layers at low and middle latitudes[J]. J. Geophys. Res.:Atmos., 2012, 117(D7):1-14
    [13] MERIWETHER J W, GARDNER C S. A review of the mesosphere inversion layer phenomenon[J]. J. Geophys. Res.:Atmos., 2000, 105(D10):12405-12416
    [14] DUCK T J, SIPLER D P, SALAH J E, et al. Rayleigh lidar observations of a mesospheric inversion layer during night and day[J]. Geophys. Res. Lett., 2001, 28(18):3597-3600
    [15] HAUCHECORNE A, MAILLARD A. A 2-d dynamical model of mesospheric temperature inversions in winter[J]. Geophys. Res. Lett., 1990, 17(12):2197-2200
    [16] SASSI F, GARCIA R R, BOVILLE E, et al. On temperature inversions and the mesospheric surf zone[J].J. Geophys. Res.:Atmos., 2002, 107(D19):ACL 8-1-ACL 8-11
    [17] SICA R J, ARGALL P S, SHEPHERD T G, et al. Model-measurement comparison of mesospheric temperature inversions, and a simple theory for their occurrence[J]. Geophys. Res. Lett., 2007, 34(23):231-247
    [18] FADNAVIS S, SⅡNGH D, BEIG G, et al. Seasonal variation of the mesospheric inversion layer, thunderstorms, and mesospheric ozone over India[J]. J. Geophys. Res.:Atmos., 2007, 112(D15):1-12
    [19] QIAO S, PAN W, ZHU K Y, et al. Initial results of lidar measured middle atmosphere temperatures over tibetan plateau[J]. Atmos. Oceanic Sci. Lett., 2014, 7(3):213-217
    [20] YU Ting, PAN Weilin, ZHU Keyun, et al. Preliminary analysis of mesospheric summer temperature measurements in Golmud[J]. Infrared Laser Eng., 2016, 45(12):1211005-1-1211005-7(鱼艇, 潘蔚琳, 朱克云, 等. 夏季格尔木中间层大气温度探测初步分析[J]. 红外与激光工程, 2016, 45(12):1211005-1-1211005-7)
    [21] MERTENS C J, MLYNCZAK M J, LÓPEZ-PUERTAS M, et al. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15μm earth limb emission under non-LTE conditions[J]. Geophys. Res. Lett., 2001, 28(7):1391-1394
    [22] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J]. J. Geophys. Res.:Space Phys., 2002, 107(A12):SIA 15-1-SIA 15-16
    [23] QIAO S, PAN W L, LÜ D. Winter mesospheric thermal structure over tibetan plateau[C]//The 27th International Laser Radar Conference 2016. New York, USA, 2016
    [24] HAUCHECORNE A, CHANIN M L, WILSON R. Mesospheric temperature inversion and gravity wave breaking[J]. Geophys. Res. Lett., 1987, 14(9):933-936
    [25] WHITEWAY J A, CARSWELL A I, WARD W E. Mesospheric temperature inversions with overlying nearly adiabatic lapse rate:An Indication of a well-mixed turbulent layer[J]. Geophys. Res. Lett., 1995, 22(10):1201-1204
    [26] GILLE S T, HAUCHECORNE A, CHANIN M L. Semidiurnal and diurnal tidal effects in the middle atmosphere as seen by Rayleigh lidar[J]. J. Geophys. Res.:Atmos., 1991, 96(D4):7579-7587
    [27] STATES R J, GARDNER C S. Thermal structure of the mesopause region (80~105km) at 40°N latitude. Part Ⅱ:Diurnal Variations[J]. J. Atmos. Sci., 2000, 57(1):66-77
    [28] RAMESH K, SRIDHARAN S. Large mesospheric inversion layer due to breaking of small-scale gravity waves:evidence from rayleigh lidar observations over Gadanki (13.5°N, 79.2°E)[J]. J. Atmos. Sol.-Terr. Phys., 2012, 89(89):90-97
    [29] RAMESH K, SRIDHARAN S, RAGHUNATH K, et al. Planetary wave-gravity wave interactions during mesospheric inversion layer events[J]. J. Geophys. Res. Space Phys., 2013, 118(7):4503-4515
    [30] GARDNER C S, YANG W M. Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico[J]. J. Geophys. Res. Atmos., 1998, 103(D14):16909-16926
    [31] LIU H L, HAGAN M E. Local heating/cooling of the mesosphere due to gravity wave and tidal coupling[J]. Geophys. Res. Lett., 1998, 25(15):2941-2944
    [32] LIU H L, HAGAN M E, ROBLE R G. Local mean state changes due to gravity wave breaking modulated by the diurnal tide[J]. J. Geophys. Res.:Atmos., 2000, 105(D10):12381-12396
    [33] BROWN L B, GERRARD A J, MERIWETHER J W, et al. All-sky imaging observations of mesospheric fronts in OI 557.7nm and broadband OH airglow emissions:Analysis of frontal structure, atmospheric background conditions, and potential sourcing mechanisms[J]. J. Geophys. Res.:Atmos., 2004, 109(D19):1-19
    [34] MLYNCZAK M G, MORGAN F, YEE J H, et al. Simultaneous measurements of the O2(^1Δ) and O2() Airglows and ozone in the daytime mesosphere[J]. Geophys. Res. Lett., 2001, 28(6):999-1002
    [35] XU Xiaohua, GUO Jincheng, LUO Jia. Analysis of the active characteristics of stratosphere gravity waves over the Qinghai-Tibetan Plateau using COSMIC radio occultation data[J]. Chin. J. Geophys., 2016, 59(4):1199-1210(徐晓华, 郭金城, 罗佳. 利用COSMIC RO数据分析青藏高原平流层重力波活动特征[J]. 地球物理学报, 2016, 59(4):1199-1210)
    [36] LI Q Z, XU J Y, YUAN W, et al. Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region[J]. J. Geophys. Res.:Space Phys., 2016, 121(9):9204-9221
  • 加载中
计量
  • 文章访问数:  935
  • HTML全文浏览量:  106
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-16
  • 修回日期:  2018-08-06
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回