中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

Chinese Journal of Space Science ›› 2017, Vol. 37 ›› Issue (3): 291-297.doi: 10.11728/cjss2017.03.291

Previous Articles     Next Articles

Optimizing the NRLMSISE-00 Model by a New Solar EUV Proxy

XUE Bingsen, CANG Zhongya   

  1. Key Laboratory for Space Weather, China Meteorological Administration, Beijing 100080
  • Received:2016-05-11 Revised:2016-11-18 Online:2017-05-15 Published:2017-05-04

Abstract:

Solar EUV radiation is one of the sources for atmospheric density variation in thermosphere. NRLMSISE-00 model is widely used to simulate the density variation in the satellite orbit. However, this model always exhibits large density errors compared with satellite observations.In this work, the model output is compared with CHAMP satellite observation on the same position, and an ideal value of proxy for solar EUV (F*) is chosen through changing the input F10.7. Further investigation shows that F* is closely related to another solar EUV index MgII. By using of neuron network technique, the correspondence relationship between the new proxy of solar EUV (Feuv) and F10.7 and MgII. The target parameter is F*. The new proxy substitutes F10.7, and is input into NRLMSISE-00 model. The results show the difference of thermosphere density between those detected by CHAMP and GRACE-A satellite and that calculated by the NRLMSISE-00 model is dropped significantly.

Key words: Thermosphere density, NRLMSISE-00 model, Solar EUV radiation, Proxy

CLC Number: