中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

Chinese Journal of Space Science ›› 2017, Vol. 37 ›› Issue (6): 667-674.doi: 10.11728/cjss2017.06.667

Previous Articles     Next Articles

Study of Multi-directional muon flux in geomagnetic storm prediction

XUE Bingsen1, CANG Zhongya1,2, ZHANG Jilong3   

  1. 1. Key Laboratory of Space Weather, China Meteorological Administration, Beijing 100081;
    2. Institute of Space Weather, Nanjing University of Information Science and Technology, Nanjing 210044;
    3. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
  • Received:2016-11-21 Revised:2017-05-08 Online:2017-11-15 Published:2017-11-10

Abstract:

By analyzing the characteristics of cosmic ray flux evolution, the approaching of CMEs could be identified, and the geomagnetic disturbance could be forecasted. The modulation of cosmic by CMEs could be derived by comparing the fluxes from different directions, and the parameters, such as Interplanetary Magnetic Field (IMF) and direction, could be derived. In this paper, data obtained by Nagoya muon telescope are used, and southward and eastward flux are chosen for investigation in detail. The results show that the evolutions of muon fluxes from the two directions share similar pattern before the strong geomagnetic storm, while there is a 2-hour phase delay between them. It is analyzed that the cosmic rays corresponding to the two directions went into and out the CME successively and the time difference is about 2 hours. The correlation coefficient and flux difference of the fluxes in eastern and southern, concluding the phase of the southern flux is moved backward two hours or not, are calculated respectively. As CMEs approaching, the correlation coefficient with southward phase change is significantly higher than that without phase change, and the flux difference with the southward phase change is much lower than that without phase change. However, the coefficient and the flux difference began to get close to each other when CMEs arrive at the Earth. And the above parameters of phase changed disparity amplitude even exceeded the unchanged one. The characteristics are also found in the geomagnetic storms with Kp=9 from 2003 to 2005. The muon flux before the great geomagnetic storm on December 14, 2006 is analyzed, and the study found that it is coincident with the above characteristics. Therefore, directional muon detection possesses a unique ability to remote sensing CMEs propagation through the difference of the flux evolution from different directions.

Key words: Muon, Multi-direction, Correlation analysis, Geomagnetic storms

CLC Number: