中文核心期刊
CNKI期刊全文数据库
中国科学引文数据库(CSCD)源期刊
中国科技论文统计源期刊
万方数据知识服务平台
英国《科学文摘》(SA)
美国化学文摘(CA)
俄罗斯《文摘杂志》(AJ)
德国《天文学与天体物理学文摘》(AAA)
英国《中国天文学和天体物理学》(SCI收录)全文摘译期刊之一
《中国学术期刊文摘》
《中国物理文摘》
《中国天文学文摘》

Chinese Journal of Space Science ›› 2018, Vol. 38 ›› Issue (1): 29-36.doi: 10.11728/cjss2018.01.029

Previous Articles     Next Articles

Ionospheric currents and nightside ionospheric magnetic fields calculated by TIE-GCM

LIU Xuewang1,2, LI Lei1, ZHANG Yiteng1, XUE Hongbo1   

  1. 1. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190;
    2. University of Chinese Academy of Sciences, Beijing 100049
  • Received:2017-02-14 Revised:2017-06-11 Online:2018-01-15 Published:2018-01-16

Abstract:

In geomagnetic field mapping, the magnetic fields generated by the ionospheric currents are sources of interference that should be removed. In this paper, the ionospheric currents generated by neutral wind, gravity drift and pressure gradient are calculated by Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The global current distribution is used to examine the magnetic field generated by the ionospheric currents at a specific location. The variation of the three components of the magnetic field with latitude has been analyzed. The results show that the current densities in the E layer, especially in the magnetic equator and polar regions, are as high as about 103nA·m-2, while the current densities in the F layer are about 10nA·m-2. The magnetic field between 50°N and 50°S induced by ionospheric currents is about several nT from 22:00LT to 04:00LT in the magnetic quiet day (Kp ≤ 1), and the north-south and radial components of the ionospheric magnetic field are substantially larger than the east-west component. By comparing with CHAMP observation data, it is proven that the TIE-GCM has good performance in calculating ionospheric currents and magnetic fields at low and middle latitudes. However, the results are not very good at high latitudes and TIE-GCM should be improved in order to increase the calculating accuracy.

Key words: TIE-GCM, Ionosphere, current, Magnetic field, CHAMP

CLC Number: