Volume 37 Issue 6
Nov.  2017
Turn off MathJax
Article Contents
SONG Pengfei, HOU Jianguo, WANG Xiulin, ZHANG Yu, YAO Huichao. Application of Carbon Dioxide Methanation in the Regenerative Loop Environmental Control and Life Support Systems of Manned Spacecraft[J]. Chinese Journal of Space Science, 2017, 37(6): 717-723. doi: 10.11728/cjss2017.06.717
Citation: SONG Pengfei, HOU Jianguo, WANG Xiulin, ZHANG Yu, YAO Huichao. Application of Carbon Dioxide Methanation in the Regenerative Loop Environmental Control and Life Support Systems of Manned Spacecraft[J]. Chinese Journal of Space Science, 2017, 37(6): 717-723. doi: 10.11728/cjss2017.06.717

Application of Carbon Dioxide Methanation in the Regenerative Loop Environmental Control and Life Support Systems of Manned Spacecraft

doi: 10.11728/cjss2017.06.717
  • Received Date: 2016-09-14
  • Rev Recd Date: 2017-05-12
  • Publish Date: 2017-11-15
  • Carbon dioxide (CO2) methanation (Sabatier reaction) is one of the key techniques of air quality management in the manned space Environmental Control and Life Support System (ECLSS). Meanwhile, the same carbon dioxide methanation technology is also used in coal chemical industry. The carbon dioxide methanation reaction mainly occurs at the last stage of coke oven gas methanation process and coal-to-substitute natural gas methanation process, using carbon dioxide methanation catalyst. Great progress has been made in China's industrial methanation technology in recent years. The technology for industrial high purity carbon dioxide maybe helpful for the research of Sabatier technology used in spacecraft. In view of the latest development of industrial methanation technology, the Sabatier reaction and the industrial carbon dioxide methanation technology are summarized and compared, from three aspects including CO2 methanation process, catalyst and reactor, and suggestions for the research of Sabatier technology in manned spacecraft are given.

     

  • loading
  • [1]
    YANG Meng, XU Xinxi, BAI Song, et al. Air quality control system and technology for space stoctions:development and prospects[J]. Mil. Med. Sci., 2013, 37(10):725-729(杨猛, 徐新喜, 白松, 等. 空间站空气质量控制系统与控制技术的发展及展望[J]. 军事医学, 2013, 37(10):725-729)
    [2]
    ZHENG Donghuan, LI Yuwen, CHEN Zhaobo, et al. Technical system design of exhaust gas disposal and oxygen regeneration in cabin of aircraft ocean-below[J]. Chin. J. Envir. Eng., 2009, 3(1):137-142(郑东欢, 李玉文, 陈兆波, 等. 水下航行器舱室内CO2的去除及O2再生工艺系统设计[J]. 环境工程学报, 2009, 3(1):137-142)
    [3]
    SHEN Liping, ZHOU Kanghan. Experimental study on atmospheric regeneration technology of space station ca-bin[J]. Chin. J. Space Sci., 2000, 20(S):56-66(沈力平, 周抗寒. 空间站座舱大气再生技术实验研究[J]. 空间科学学报, 2000, 20(S):56-66)
    [4]
    SHI Qiaosheng, YANG Chenxin, HUO Liqin, et al. Simu-lation study on thermal properties of Sabatier chemical reaction[J]. Space Med. Med. Eng., 2014, 27(5):334-339(史乔升, 杨春信, 霍立琴, 等. Sabatier化学反应热特性仿真研究[J]. 航天医学与医学工程, 2014, 27(5):334-339)
    [5]
    TANG Lanxiang, GAO Feng, DENG Yibing, et al. Research on environmental control and life support system (ECLSS) of China's manned spacecraft[J]. Space Med. Med. Eng., 2008, 21(3):167-174(汤兰祥, 高峰, 邓一兵, 等. 中国载人航天器环境控制与生命保障技术研究[J]. 航天医学与医学工程, 2008, 21(3):167-174)
    [6]
    ZHOU Kanghan, WU Baozhi, REN Chunbo. Comparative analysis of Sabatier CO2 reduction system for space station[J]. Space Med. Med. Eng., 2011, 24(5):384-390(周抗寒, 吴宝治, 任春波. 空间站Sabatier CO2还原系统的比较分析[J]. 航天医学与医学工程, 2011, 24(5):384-390)
    [7]
    WANG Kang, GAO Feng. Review and prospects of fifty years' development of environment control and life support system in manned spacecraft[J]. Space Med. Med. Eng., 2011, 24(6):435-443(王康, 高峰. 载人航天器环控生保系统50年研制回顾与展望[J]. 航天医学与医学工程, 2011, 24(6):435-443)
    [8]
    JIN Zhiliang, QIAN Ling, LÜ Gongxuan. CO2 chemi-stry——actuality and expectation[J]. Prog. Chem., 2010, 22(6):1102-1115(靳治良, 钱玲, 吕功煊. 二氧化碳化学elax——elax现状及展望[J]. 化学进展, 2010, 22(6):1102-1115)
    [9]
    HWANG H T, HARALE A, LIU P K T, et al. A membrane-based reactive separation system for CO2 removal in a life support system[J]. J. Memb. Sci., 2008, 315(1-2):116-124
    [10]
    HUANG Zhi, CHEN Zhaobo, REN Nanqi, et al. A novel application of the SAWD-Sabatier-SPE integrated system for CO2 removal and O2 regeneration in submarine cabins during prolonged voyages[J]. J. Zhejiang Univ. Sci., 2009, 10(11):1642-1650
    [11]
    DE SAINT JEAN M, BAURENS P, BOUALLOU C. Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis[J]. Int. J. Hydrogen Energy, 2014, 39(30):17024-17039
    [12]
    SAHEBDELFAR S, RAVANCHI M T. Carbon dioxide uti-lization for methane production:a thermodynamic analysis[J]. J. Pet. Sci. Eng., 2015, 134:14-22
    [13]
    CHEIN R Y, CHEN W Y, YU C T. Numerical simulation of carbon dioxide methanation reaction for synthetic na-tural gas production in fixed-bed reactors[J]. J. Nat. Gas Sci. Eng., 2016, 29:243-251
    [14]
    CUI Kaikai, ZHOU Guilin, XIE Hongmei. Research pro-gress in CO2 methanation catalysts[J]. Chem. Ind. Eng. Prog., 2015, 34(3):724-730, 737(崔凯凯, 周桂林, 谢红梅. 二氧化碳甲烷化催化剂的研究进展[J]. 化工进展, 2015, 34(3):724-730, 737)
    [15]
    WANG Chengxue, GONG Jie. Study on Ni-Mn-based catalysts for methanation of carbon dioxide[J]. Nat. Gas Chem. Ind., 2011, 36(1):4-6, 15(王承学, 龚杰. 二氧化碳加氢甲烷化镍锰基催化剂的研究[J]. 天然气化工, 2011, 36(1):4-6, 15)
    [16]
    PAN Qiushi, PENG Jiaxi, SUN Tianjun, et al. CO2 methanation on Ni/Ce0.5Zr0.5O2 catalysts for the production of synthetic natural gas[J]. Fuel Process. Technol., 2014, 123:166-171
    [17]
    CAI Mengdie, JIANG Chengfa, CHENG Xueqing, et al. Catalyst for carbon dioxide methanation and preparation method thereof[P]. CN, CN102600854A. 2012-07-25(蔡梦蝶, 江成发, 成雪清, 等. 二氧化碳甲烷化用催化剂及其制备方法[P]. 中国专利, CN102600854A. 2012-07-25)
    [18]
    ZOU Xin, ZHANG Xiaoyang, HU Zhibiao, et al. Copper-based catalyst for methanation of carbon dioxide and preparation method of copper-based catalyst[P]. CN, CN103551153A. 2014-02-05(邹鑫, 张晓阳, 胡志彪, 等. 一种用于二氧化碳甲烷化的铜基催化剂及其制备方法[P]. 中国专利, CN103551153A. 2014-02-05)
    [19]
    ZHOU Guilin, WU Tian, XIE Hongmei, et al. Effects of structure on the carbon dioxide methanation performance of Co-based catalysts[J]. Int. J. Hydrogen Energy, 2013, 38(24):10012-10018
    [20]
    KARELOVIC A, RUIZ P. CO2 hydrogenation at low temperature over RhγAl2O3 catalysts:effect of the metal particle size on catalytic performances and reaction mecha-nism[J]. Appl. Catal. B:Envir., 2012, 113-114:237-249
    [21]
    ZHANG Yu, FENG Yachen, HOU Jianguo, et al. CO2 high-temperature methanation catalyst, and preparation and use methods thereof[P]. CN, CN104475119A. 2015-04-01(张瑜, 冯雅晨, 侯建国, 等. 一种CO2高温甲烷化催化剂及其制备、使用方法[P]. 中国专利, CN104475119A. 2015-04-01)
    [22]
    LU Hongxuan, QIN Banghui, SUN Kunpeng, et al. Study of Ru/AL2O3-TiO2 catalyst for CO2 methanation[J]. J. Mol. Catal., 2005, 19(1):27-30(卢红选, 秦榜辉, 孙鲲鹏, 等. 负载型钌/铝钛复合载体上的二氧化碳甲烷化反应[J]. 分子催化, 2005, 19(1):27-30)
    [23]
    LIU Jingxia, HOU Wenhua. Study on Ru-based catalyst used in reductive reaction of CO2[J]. Space Med. Med. Eng., 2004, 17(6):457-460(刘静霞, 侯文华. CO2还原钌催化剂的研究[J]. 航天医学与医学工程, 2004, 17(6):457-460)
    [24]
    AI Shangkun, ZHOU Ding, SUN Jinbiao, et al. A study of low temperature catalyst for sabatier reaction[J]. Space Med. Med. Eng., 1999, 13(4):277-280(艾尚坤, 周定, 孙金镖, 等. Sabatier反应低温催化剂研究[J]. 航天医学与医学工程, 1999, 13(4):277-280)
    [25]
    JIANG Qi. The catalytic activity of supported Pd-cata-lyst for hydrogenant methanation of carbon dio-xide[J]. Prec. Met., 1998, 19(2):17-22(江琦. 担载型钯催化剂对CO2加H2甲烷化反应的催化性能[J]. 贵金属, 1998, 19(2):17-22)
    [26]
    LUO Xiaojun, WANG Rong, LIN Jianxin, et al. Effect of precipitation methods on catalytic activity of Ru/CeO2 catalyst for ammonia synthesis[J]. Chin. J. Catal., 2009, 30(11):1125-1130(罗小军, 王榕, 林建新, 等. 沉淀方法对Ru/CeO2氨合成催化剂催化性能的影响[J]. 催化学报, 2009, 30(11):1125-1130)
    [27]
    MU Xinyuan, HU Bin, XIA Chungu, et al. Preparation of supported Ru-catalysts with low-concentration and catalytic performance in hydrogenation of benzene[J]. J. Mol. Catal., 2009, 23(3):215-221(慕新元, 胡斌, 夏春谷, 等. 低含量高活性负载钌催化剂合成及苯加氢反应研究[J]. 分子催化, 2009, 23(3):215-221)
    [28]
    VARONE A, FERRARI M. Power to liquid and power to gas:an option for the German Energiewende[J]. Renew. Sustain. Energy Rev., 2015, 45:207-218
    [29]
    SONG Pengfei, HOU Jianguo, YAO Huichao, et al. Method for preparing natural gas by carbon dioxide sectionalized Methanation[P]. CN, CN105623762A. 2016-06-01(宋鹏飞, 侯建国, 姚辉超, 等. 一种二氧化碳分段甲烷化制取天然气的方法[P]. 中国专利, CN105623762A. 2016-06-01)
    [30]
    SONG Huanling, CHOU Lingjun, YANG Jian, et al. Catalysts for carbon dioxide methanation[P]. CN,CN102091629A. 2011-06-15(宋焕玲, 丑凌军, 杨建, 等. 二氧化碳甲烷化催化剂[P]. 中国专利, CN102091629A. 2011-06-15)
    [31]
    DIAO Wangsheng, LI Fen. Formation and prevention of carbonyl nickel in hydrogenated unit[J]. Saf. Health Envir., 2007, 7(8):28-30(刁望升, 李玢. 加氢装置中羰基镍的生成及预防[J]. 安全、健康和环境, 2007, 7(8):28-30)
    [32]
    SUN Xiaoming, LI Yongchao, WEN Zhao'an, et al. Cau-ses analysis and preventive measures on formation of nickel carbonyl[J]. Qilu Petrochem. Technol., 2015, 43(1):48-50(孙晓明, 李永超, 文兆安, 等. 羰基镍的形成原因分析及预防措施[J]. 齐鲁石油化工, 2015, 43(1):48-50)
    [33]
    SHI Yongsheng, CHEN Dafang. Production and prevention of carbonyl nickel in hydrogenation unit[J]. Inner Mongolia Petrochem., 2011, 37(23):47-49(石永胜, 陈大方. 加氢装置中羰基镍的生成及预防[J]. 内蒙古石油化工, 2011, 37(23):47-49)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1347) PDF Downloads(680) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return