Volume 39 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
YANG Guanglin, SUN Yueqiang, BAI Weihua, ZHANG Xiaoxin, YANG Zhongdong, ZHANG Peng, TAN Guangyuan. Beidou Navigation Satellite System Sounding of the Ionosphere from FY-3C GNOS:Preliminary Results[J]. Chinese Journal of Space Science, 2019, 39(1): 36-45. doi: 10.11728/cjss2019.01.036
Citation: YANG Guanglin, SUN Yueqiang, BAI Weihua, ZHANG Xiaoxin, YANG Zhongdong, ZHANG Peng, TAN Guangyuan. Beidou Navigation Satellite System Sounding of the Ionosphere from FY-3C GNOS:Preliminary Results[J]. Chinese Journal of Space Science, 2019, 39(1): 36-45. doi: 10.11728/cjss2019.01.036

Beidou Navigation Satellite System Sounding of the Ionosphere from FY-3C GNOS:Preliminary Results

doi: 10.11728/cjss2019.01.036
  • Received Date: 2017-12-11
  • Rev Recd Date: 2018-05-28
  • Publish Date: 2019-01-15
  • The world's first dual-system compatible Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) for Beidou Navigation Satellite System (BDS) and Global Positioning System (GPS) was successfully launched into orbit with FY-3C satellite on 23 September 2013, and a large number of ionospheric BDS Radio Occultation (BDSRO) data have been collected. The ionospheric BDSRO products observed by FY-3C GNOS are introduced firstly, then the distribution of ionospheric Electron Density Profiles (EDPs) in October 2013 is analyzed. Finally, the precision of ionospheric BDSRO data obtained by FY-3C GNOS is verified through F2-layer peak electron density (NmF2) comparisons between BDSRO and ionosondes. The results show that the correlation coefficient ofNmF2 data between BDSRO and ionosondes is 0.96, the bias is 10.21% and the standard deviation is 19.61%, which is comparable with other international ionospheric occultation products based on GPS. The NmF2 precision of BDSRO has the following characteristics. Its precision at daytime is higher than that at nighttime, and its precision in summer is higher than that in equinox seasons, while the precision in winter is lowest. Moreover, its precision at mid-latitude region is higher than that at low-latitude region, and the precision at high-latitude region is lowest. The precision of BDS satellites on Inclined Geosynchronous Satellite Orbit (IGSO) is higher than that on Geosynchronous Orbit (GEO) and Medium Earth Orbit (MEO). The precision consistency of the ionospheric occultation product between BDS-FY-3C GNOS and other internationl occultation projects is of great significance for comprehensively utilizing the GNSS occultation observation data. With the continued deployment of FY-3 satellites and Beidou navigation satellites, GNOS can provide more ionospheric occultation data in the future, which will be helpful to the ionospheric research and space weather forecasting based on GNSS occultation observations.

     

  • loading
  • [1]
    LIU J Y, TSAI Y B, MA K F, et al. Ionospheric GPS Total Electron Content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami[J]. J. Geophys. Res.:Space Phys., 2006, 111(A5):698-704
    [2]
    LIU J Y, CHEN C H, LIN C H, et al. Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake[J]. J. Geophys. Res. Space Phys., 2011, 116(A6):97-108
    [3]
    WAN W X, LIU L, YUAN H, et al. The GPS measured SITEC caused by the very intense solar flare on July 14, 2000[J]. Adv. Space Res., 2005, 36(12):2465-2469
    [4]
    DING F, WAN W, LIU L, et al. A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003-2005[J]. J. Geophys. Res.:Space Phys., 2008, 113 (A3):A00A01. DOI: 10.1029/2008JA013037
    [5]
    PAVELYEV A G, LIOU Y A, WICKERT J, et al. Effects of the ionosphere and solar activity on radio occultation signals:Application to CHAllenging Minisatellite Payload satellite observations[J]. J. Geophys. Res.:Space Phys., 2007, 112(A6):49-60
    [6]
    LIU L, ZHAO B Q, WAN W X, et al. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements[J]. J. Geophys. Res.:Space Phys., 2009, 114(A2). DOI: 10.1029/2008ja013819
    [7]
    YUE X, SCHREINER W S, LEI J, et al. Climatology of ionospheric upper transition height derived from COSMIC satellites during the solar minimum of 2008[J]. J. Atmos. Solar-Terr. Phys., 2010, 72(17):1270-1274
    [8]
    YUE X, SCHREINER W S, KUO Y, et al. Global 3D ionospheric electron density reanalysis based on multisource data assimilation[J]. J. Geophys. Res.:Space Phys., 2012, 117(A9):667-672
    [9]
    YUE X A, SCHREINER W S, KUO Y H. A feasibility study of the radio occultation electron density retrieval aided by a global ionospheric data assimilation model[J]. J. Geophys. Res.:Space Phys., 2012, 117(A8):648-659
    [10]
    KURSINSKI E R, HAJJ G A, SCHOFIELD J T, et al. Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System[J]. J. Geophys. Res. Atmos., 1997, 102(D19):23429-23465
    [11]
    ROCKEN C, ANTHES R, EXNER M, et al. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. J. Geophys. Res. Atmos., 1997, 102(D25):29849-29866
    [12]
    WARE R, ROCKEN C, SOLHEIM F, et al. GPS sounding of the atmosphere from low earth orbit:preliminary results[J]. Bull. Ame. Meteor. Soc., 1996, 77(1):19-40
    [13]
    WICKERT J, SCHMIDT T, BEYERLE G, et al. The radio occultation experiment aboard CHAMP:Operational data analysis and validation of vertical atmospheric profiles[J]. J. Meteor. Soc. Japan. Ser. Ⅱ, 2004, 82(1B):381-395
    [14]
    WICKERT J, BEYERLE G, KÖNIG R, et al. GPS radio occultation with CHAMP and GRACE:A first look at a new and promising satellite configuration for global atmospheric sounding[J]. Ann. Geophys., 2005, 23(3):653-658
    [15]
    ANTHES R A, ROCKEN C, KUO Y H. Applications of COSMIC to Meteorology and Climate[J]. Terr. Atmos. Ocean. Sci., 2000, 11(1):115-156
    [16]
    ANTHES R A, BERNHARDT P A, CHEN Y, et al. The COSMIC/FORMOSAT-3 Mission:Early Results[J]. Bull. Am. Meteor. Soc., 2008, 89(3):313-333
    [17]
    BAI W H, SUN Y Q, DU Q F, et al. An introduction to the FY3 GNOS instrument and mountain-top tests[J]. Atmos. Meas. Techn., 2014, 7(6):1817-1823
    [18]
    HAJJ G A, ROMANS L J. Ionospheric electron density profiles obtained with the Global Positioning System:Results from the GPS/MET experiment[J]. Radio Sci., 1998, 33(1):175-190
    [19]
    LEI J, SYNDERGAARD S, BURNS A G, et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions:Preliminary results[J]. J. Geophys. Res., 2007, 112(A7):601-623
    [20]
    KELLEY M C, WONG V K, APONTE N, et al. Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data[J]. Radio Sci., 2009, 44(4):1-13
    [21]
    LIU J Y, LEE C C, YANG J Y, et al. Electron density profiles in the equatorial ionosphere observed by the FORMOSAT-3/COSMIC and a digisonde at Jicamarca[J]. GPS Solut., 2010, 14(1):75-81
    [22]
    KRANKOWSKI A, ZAKHARENKOVA I, KRYPIAK-GREGORCZYK A, et al. Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data[J]. J. Geod., 2011, 85(12):949-964
    [23]
    CHUO Y J, LEE C C, CHEN W S, et al. Comparison between bottomside ionospheric profile parameters retrieved from FORMOSAT3 measurements and ground-based observations collected at Jicamarca[J]. J. Atmos. Solar-Terr. Phys., 2011, 73(13):1665-1673
    [24]
    ELY C V, BATISTA I S, ABDU M A. Radio occultation electron density profiles from the FORMOSAT-3/COSMIC satellites over the Brazilian region:a comparison with Digisonde data[J]. Adv. Space Res., 2012, 49(11):1553-1562
    [25]
    SAHAI Y, JESUS R D, FAGUNDES P R, et al. Effects observed in the equatorial and low latitude ionospheric F-region in the Brazilian sector during low solar activity geomagnetic storms and comparison with the COSMIC measurements[J]. Adv. Space Res., 2012, 50(10):1344-1351
    [26]
    SUN Lingfeng, ZHAO Biqiang, YUE Xin'an, et al. Comparison between ionospheric character parameters retrieved from FORMOSAT3 measurement and ionosonde observation over China[J]. Chin. J. Geophys., 2014, 57 (11):3625-3632(孙凌峰, 赵必强, 乐新安, 等. 中国区域电离层垂测仪探测参量与COSMIC掩星反演结果比较研究[J]. 地球物理学报, 57(11):3625-3632)
    [27]
    HU L H, NING B Q, LIU L B, et al. Comparison between ionospheric peak parameters retrieved from COSMIC measurement and ionosonde observation over Sanya[J]. Adv. Space Res., 2014, 54(6):929-938
    [28]
    REINISCH B W, GALKIN I A. Global Ionospheric Radio Observatory (GIRO)[J]. Earth Planets Space, 2011, 63(4):377-381
    [29]
    JAKOWSKI N, WEHRENPFENNIG A, HEISE S, et al. GPS radio occultation measurements of the ionosphere from CHAMP:Early results[J]. Geophys. Res. Lett., 2002, 29(10). DOI: 10.1029/2001gl014364
    [30]
    LIMBERGER M, HERNÁNDEZ-PAJARES M, ARAGÓN-ÁNGEL A, et al. Long-term comparison of the ionospheric F2 layer electron density peak derived from ionosonde data and Formosat-3/COSMIC occultations[J]. J. Space Weather Space Climate, 2015, 5:A21. DOI: 10.1051/swsc/2015023
    [31]
    YANG G L, SUN Y Q, BAI W H, et al. Validation results of NmF2 and hmF2 derived from ionospheric density profiles of GNOS on FY-3C Satellite[J]. Sci. China:Technol. Sci., 2017, 61(9):1372-1383
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1325) PDF Downloads(463) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return