Volume 40 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
LIU Congliang, KIRCHENGAST Gottfried, SUN Yueqiang, WANG Xin, LÜ Daren, BAI Weihua, DU Qifei, LÖSCHER Armin, SYNDERGAARD Stig, TIAN Longfei, ZHANG Zhihua. Exploring Greenhouse Gases Water and Climate Changes: Scientific Opportunities for the Climate and Atmospheric Composition Exploring Satellites Mission[J]. Chinese Journal of Space Science, 2020, 40(2): 151-168. doi: 10.11728/cjss2020.02.151
Citation: LIU Congliang, KIRCHENGAST Gottfried, SUN Yueqiang, WANG Xin, LÜ Daren, BAI Weihua, DU Qifei, LÖSCHER Armin, SYNDERGAARD Stig, TIAN Longfei, ZHANG Zhihua. Exploring Greenhouse Gases Water and Climate Changes: Scientific Opportunities for the Climate and Atmospheric Composition Exploring Satellites Mission[J]. Chinese Journal of Space Science, 2020, 40(2): 151-168. doi: 10.11728/cjss2020.02.151

Exploring Greenhouse Gases Water and Climate Changes: Scientific Opportunities for the Climate and Atmospheric Composition Exploring Satellites Mission

doi: 10.11728/cjss2020.02.151
Funds:

Supported by the National Natural Science Foundation of China (41775034, 41606206), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA15012300)

More Information
  • Author Bio:

    LIU Congliang,E-mail:lcl@nssc.ac.cn

  • Received Date: 2019-12-31
  • Publish Date: 2020-03-15
  • The Essential Climate Variables (ECVs), such as the atmospheric thermodynamic state variables and greenhouse gases, play an important role in the atmosphere physical processes and global climate change. Given the need of improvements in existing ground-based and satellite observations to successfully deliver atmosphere and climate benchmark data and reduce data ambiguity, the Climate and Atmospheric Composition Exploring Satellites mission (CACES) was proposed and selected as a candidate mission of the Strategic Priority Research Program of Chinese Academy Science (SPRPCAS). This paper presents an overview of the key scientific questions and responses of ECVs in relation to global change; the principles, algorithms, and payloads of microwave occultation using centimeter and millimeter wave signals between low Earth orbit satellites (LEO-LEO microwave occultation, LMO) as well as of the LEO-LEO infrared-laser occultation (LIO); the CACES mission with its scientific objectives, mission concept, spacecraft and instrumentation.

     

  • loading
  • [1]
    KLIORE A, CAIN D L, LEVY G S, et al. Occultation experiment:results of the first direct measurement of Mars's atmosphere and ionosphere[J]. Science, 1965, 149(3689):1243-8
    [2]
    KURSINSKI E R, HAJJ G A, BERTIGER W I, et al. Initial results of radio occultation observations of Earth's atmosphere using the global positioning system[J]. Science, 1996, 271(5252):1107-1110
    [3]
    WICKERT J, REIGBER C, BEYERLE G, et al. Atmosphere sounding by GPS radio occultation:first results from CHAMP[J]. Geophys. Res. Lett., 2001, 28(17):3263-3266
    [4]
    BEYERLE G. GPS radio occultation with GRACE:atmospheric profiling utilizing the zero difference technique[J]. Geophys. Res. Lett., 2005, 32(13):L13806
    [5]
    LUNTAMA J P, KIRCHENGAST G, BORSCHE M, et al. Prospects of the EPS GRAS mission for operational atmospheric applications[J]. Bull. Am. Meteorol. Soc., 2008, 89(12). DOI: 10.1175/2008BAMS2399.1
    [6]
    ANTHES R A, ECTOR D, HUNT D C, et al. The COSMIC/FORMOSAT-3 mission:early results[J]. Bull. Am. Meteorol. Soc., 2008, 89(3):313-333
    [7]
    LIAO M, ZHANG P, YANG G L, et al. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C[J]. Atmosph. Meas, Tech., 2016, 9(2):781-792
    [8]
    SCHREINER W, ROCKEN C, SOKOLOVSKIY S, et al. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission[J]. Geophys. Res. Lett., 2007, 34(4):L04808
    [9]
    STEINER A K, HUNT D, HO S P, et al. Quantification of structural uncertainty in climate data records from GPS radio occultation[J]. Atmos. Chem. Phys., 2013, 13(3):1469-1484
    [10]
    SCHERLLIN-PIRSCHER B, STEINER A K, KIRCHENGAST G, et al. The power of vertical geolocation of atmospheric profiles from GNSS radio occultation[J]. J. Geophys. Res. Atmos., 2017, 122(3):1595-1616
    [11]
    HEALY S B, THÉPAUT J N. Assimilation experiments with champ GPS radio occultation measurements[J]. Quart. J. Roy. Meteorol. Soc., 2006, 132(615):605-623
    [12]
    CUCURULL L, ANTHES R A. Impact of infrared, microwave, and radio occultation satellite observations on operational numerical weather prediction[J]. Mon. Weather Rev., 2014, 142(11):4164-4186
    [13]
    APARICIO J M, LAROCHE S. Estimation of the added value of the absolute calibration of GPS radio occultation data for numerical weather prediction[J]. Mon. Weather Rev., 2015, 143(4):1259-1274
    [14]
    FOELSCHE U, PIRSCHER B, BORSCHE M, et al. Assessing the climate monitoring utility of radio occultation data:from CHAMP to FORMOSAT-3/COSMIC[J]. Terr. Atmos. Ocean. Sci., 2009, 20:155-170
    [15]
    LACKNER B C, STEINER A K, HEGERL G C, et al. Atmospheric climate change detection by radio occultation data using a fingerprinting method[J]. J. Clim., 2011, 24:5275-5291
    [16]
    KURSINSKI E R, HAJJ G A, SCHOFIELD J T, et al. Observing Earth's atmosphere with radio occultation measurements using the global positioning system[J]. J. Geophys. Res., 1997, 102:23429-23465
    [17]
    YUNCK T P, HAJJ G A, KURSINSKI E R, et al. AMORE:an autonomous constellation concept for atmospheric and ocean observation[J]. Acta Astron., 2000, 46(2/3/4/5/6):355-364
    [18]
    HAJJ G A, KURSINSKI E R, ROMANS L J, et al. A technical description of atmospheric sounding by GPS occultation[J]. J. Atmos. Sol.:Terr. Phy., 2002, 64:451-469
    [19]
    KURSINSKI E R, SYNDERGAARD S, FLITTNER D, et al. A microwave occultation observing system optimized to characterize atmospheric water, temperature and geopotential via absorption[J]. J. Atmos. Ocean. Technol., 2002, 19(12):1897-1914
    [20]
    KIRCHENGAST G, HOEG P. The ACE+ Mission:an Atmosphere and Climate Explorer Based on GPS, GALILEO, and LEO-LEO Radio Occultation[M]//Occultations for Probing Atmosphere and Climate. Berlin Heidelberg:Springer, 2004:201-220
    [21]
    GORBUNOV M E, KIRCHENGAST G. Processing X/K band radio occultation data in the presence of turbulence[J]. Radio Sci., 2005, 40(6). DOI: 10.1029/2005rs-003263
    [22]
    GORBUNOV M E, KIRCHENGAST G. Fluctuations of radio occultation signals in X/K band in the presence of anisotropic turbulence and differential transmission retrieval performance[J]. Radio Sci., 2007, 42(4). DOI: 10.1029/2006rs003544
    [23]
    KURSINSKI E R, WARD D, OTAROLA A, et al. The Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS)[M]//New Horizons in Occultation Research:Studies in Atmosphere and Climate. Berlin:Springer, 2009:295-313
    [24]
    FENG D D, SYNDERGAARD S, HERMAN B M, et al. Deriving atmospheric water vapor and ozone profiles from active microwave occultation measurements[J]. Sens., Syst., Next-Gener. Satellites IV, 2000, 4169:299-308
    [25]
    SCHWEITZER S, KIRCHENGAST G, SCHWAERZ M, et al. Thermodynamic state retrieval from microwave occultation data and performance analysis based on end-toend simulations[J]. J. Geophys. Res., 2011, 116:D10301
    [26]
    KIRCHENGAST G, SCHWEITZER S. Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space[J]. Geophys. Res. Lett., 2011, 38(13):142-154
    [27]
    KIRCHENGAST G, BERNATH P, BUEHLER S, et al. ACCURATE-Climate Benchmark Profiling of Greenhouse Gases and Thermodynamic Variables and Wind from Space (ESA Earth Explorer Opportunity Mission EE-8 Proposal)[R]. Graz:Wegener Center Verlag, 2010
    [28]
    SYNDERGAARD S, RUBEK F, SCHWEITZER S, et al. Review of Active Occultation Techniques from L-Band to the SW-Infrared[R]. Copenhagen:DMI, 2009
    [29]
    HAJJ A G, KURSINSKI E R, Walter S J. Examining the Appropriate GPS Science Signal Suitable for Radio Occultation Measurements of Atmospheric Water Vapor (Abstract G22C-04)[R]. AGU Fall Meeting, 1997
    [30]
    HERMAN B, FENG D, XUN X. GPS Remote Sensing Using a Third Frequency for Water Vapor Profiles of the Atmosphere (Abstract G22C-05)[R]. AGU Fall Meeting, 1997
    [31]
    KURSINSKI E R, WARD D, STOVERN M, et al. Development and testing of the active temperature, ozone and moisture microwave spectrometer (ATOMMS) cm and mm wavelength occultation instrument[J]. Atmos. Meas. Tech., 2012, 5(2):439-456
    [32]
    KURSINSKI E R, WARD D, OTAROLA A C, et al. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate[C]//Earth Observing Missions and Sensors:Development, Implementation, and Characterization Iv, 2016
    [33]
    KURSINSKI E R, FOLKNER W, ZUFFADA C, et al. The Mars Atmospheric Constellation Observatory (MACO) Concept, in Occultations for Probing Atmosphere and Climate[M]. Berlin-Heidelberg-New York:Springer, 2004:393-405
    [34]
    KIRCHENGAST G. End-to-end GNSS Occultation Performance Simulator Functionality Definition-EGOPS[R]. Inst. Meteorol. Geophys., Univ of Graz, Austria, 1996
    [35]
    WATS-Water Vapor and Temperature in the Troposphere and Stratosphere (3rd report of Reports for Mission Selection[R]. Noordwijk:Spec. Public, 2001
    [36]
    HOEG P, KIRCHENGAST G. ACE+-Atmosphere and Climate Explorer Based on GPS, GALILEO, and LEOLEO Radio Occultation (ESA Earth Explorer Opportunity Mission Proposal)[R]. Graz:University of Graz, 2002
    [37]
    KIRCHENGAST G, HOEG P. The ACE+ Mission:an Atmosphere and Climate Explorer Based on GPS, GALILEO and LEO-LEO Radio Occultation. In Occultations for Probing Atmosphere and Climate[M]. BerlinHeidelberg-New York:Springer, 2004:201-220
    [38]
    KIRCHENGAST G, SCHWEITZER S, GORBUNOV M E, et al. The ACE+ Phase A Scientific Support Study ACEPASS-LEO-LEO Occultation Characterisation Study (Summary Report)[R]. Graz:University of Graz, 2005
    [39]
    CUCCOLI F, FACHERIS L. Global water vapor estimate in the lowest troposphere by attenuation measurements on LEO-LEO satellites at 17.25 GHz[C]//IGARSS 2004:IEEE International Geoscience and Remote Sensing Symposium Proceedings, 2004:2748-2751
    [40]
    FACHERIS L, CUCCOLI F, ARGENTI F. Normalized Differential Spectral Attenuation (NDSA) measurements between two LEO satellites:performance analysis in the Ku/K-bands[J]. IEEE Trans. Geosci. Remote Sens., 2008, 46(8):2345-2356
    [41]
    SCHWÄRZ M, RAMSAUER J, KIRCHENGAST G. End-to-end Scientific Performance Analysis for Retrieval of Atmospheric Data from GALILEO K-band Radio Links[R]. Graz:University of Graz, 2006
    [42]
    KIRCHENGAST G, SchwÄrz M. Scientific Applications of GaliLEO K-bandRadio Links[R]. GJU GADEM Project-Tech. Note WP1200, 2006:16
    [43]
    KIRCHENGAST G. ACCURATE-Atmospheric Climate and Chemistry in the UTLS Region and Climate Trends Explorer, Earth Explorer Core Mission Proposal to ESA[R]. Graz:University of Graz, 2005
    [44]
    KIRCHENGAST G, Schweitzer S. ACCURATE LEOLEO Infrared Laser Occultation Initial Assessment:Requirements, Payload Characteristics, Scientific Performance Analysis, and Breadboarding Specifications[R]. Graz:University of Graz, 2007
    [45]
    SCHWEITZER S. The ACCURATE Concept and the Infrared Laser Occultation Technique:Mission Design and Assessment of Retrieval Performance[R]. Graz:Wegener Center, 2010
    [46]
    BROOKE J S A, BERNATH P F, KIRCHENGAST G, et al. Greenhouse gas measurements over a 144 km open path in the Canary Islands[J]. Atmos. Meas. Tech., 2012, 5(9):2309-2319
    [47]
    PROSCHEK V, KIRCHENGAST G, SCHWEITZER S, et al. Retrieval and validation of carbon dioxide, methane and water vapor for the Canary Islands IR-laser occultation experiment[J]. Atmos. Meas. Tech., 2015, 8(8):3315-3336
    [48]
    SUN Y Q, DU Q F, ZHU G W. Joint Russian-Chinese satellite-to-satellite martian radio occultation experiment[J]. Chin. J. Space Sci., 2009, 29(5):475-479
    [49]
    SCHWEITZER S, KIRCHENGAST G, PROSCHEK V. Atmospheric influences on infrared-laser signals used for occultation measurements between low Earth orbit satellites[J]. Atmos. Meas. Tech., 2011, 4(10):2273-2292
    [50]
    PROSCHEK V, KIRCHENGAST G, EMDE C, et al. Greenhouse gas profiling by infrared-laser and microwave occultation in cloudy air:Results from end-to-end simulations[J]. J. Geophys. Res.:Atmos., 2014, 119(21):12372-12390
    [51]
    PROSCHEK V, KIRCHENGAST G, SCHWEITZER S. Greenhouse gas profiling by infrared-laser and microwave occultation:retrieval algorithm and demonstration results from end-to-end simulations[J]. Atmos. Meas. Tech., 2011, 4(10):2035-2058
    [52]
    SYNDERGAARD S, KIRCHENGAST G. An Abel transform for deriving line-of-sight wind profiles from LEOLEO infrared laser occultation measurements[J]. J. Geophys. Res.:Atmos., 2016, 121(6):2525-2541
    [53]
    LIU C L, KIRCHENGAST G, SYNDERGAARD S, et al. A review of low Earth orbit occultation using microwave and infrared-laser signals for monitoring the atmosphere and climate[J]. Adv. Space Res., 2017, 60(12):2776-2811
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(952) PDF Downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return