Volume 40 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
CUI Honglu, YAN Zhaoai, ZHANG Bingyan, GUO Wenjie, HU Xiong. Research on Atmospheric Lidar Signal Simulation Based on HITRAN Database[J]. Chinese Journal of Space Science, 2020, 40(6): 1046-1051. doi: 10.11728/cjss2020.06.1046
Citation: CUI Honglu, YAN Zhaoai, ZHANG Bingyan, GUO Wenjie, HU Xiong. Research on Atmospheric Lidar Signal Simulation Based on HITRAN Database[J]. Chinese Journal of Space Science, 2020, 40(6): 1046-1051. doi: 10.11728/cjss2020.06.1046

Research on Atmospheric Lidar Signal Simulation Based on HITRAN Database

doi: 10.11728/cjss2020.06.1046
  • Received Date: 2019-04-12
  • Rev Recd Date: 2020-05-31
  • Publish Date: 2020-11-15
  • Signal simulation is very important for atmospheric lidar research. It provides a basis for the design and development of lidar system. The simulation system in this paper can be used to simulate the lidar echo signal based on the absorption line data in the HITRAN database. It can calculate the absorption spectrum of atmospheric molecules, and the attenuation caused by aerosols. This simulation system can also calculate molecules scatter coefficient with parameters built in LOWTRAN and it can simulate the Signal-to-Noise Ratio (SNR) of the echo signal. The echo signals of 355nm, 532nm and 1064nm are simulated by the simulation system using the lidar equation and these signals agree well with the distribution of aerosols and atmospheric molecules. The simulation results of 532nm are compared with a Rayleigh Doppler lidar measured results and their results are consistent, which shows that the simulation system is reliable. The optical efficiency of this lidar system is roughly evaluated and its value is reasonable. The measured SNR and the simulated SNR are calculated. Their results are similar, so simulated SNR can evaluate the reliability of echo signals.

     

  • loading
  • [1]
    FUJⅡ T, FUKUCHI T. Laser Remote Sensing[M]. Boca Raton: CRC Press, 2005
    [2]
    SONG Xiaoquan, GUO Jinjia, YAN Zhaoai, et al. Research on high spectrum resolution lidar detection of atmospheric aerosol optical parameters[J]. Prog. Nat. Sci., 2008, 18(9):1009-1015(宋小全, 郭金家, 闫召爱, 等. 大气气溶胶光学参数的高光谱分辨率激光雷达探测研究[J]. 自然科学进展, 2008, 18(9):1009-1015)
    [3]
    QIU Jinheng, ZHENG Siping, HUANG Qirong, et al. Lidar measurements of cloud and aerosol in the upper troposphere in Beijing[J]. Chin. J. Atmos. Sci., 2003, 27(1):1-7(邱金恒, 郑斯平, 黄其荣, 等. 北京地区对流层中上部云和气溶胶的激光雷达探测[J]. 大气科学, 2003, 27(1):1-7)
    [4]
    CHI Ruli, LIU Houtong, WANG Zhenzhu, et al. Observations of cirrus clouds using polarization Mie lidar[J]. High Power Laser Part. Beams, 2009, 21(9):1295-1300(迟如利, 刘厚通, 王珍珠, 等. 偏振—米散射激光雷达对卷云的探测[J]. 强激光与粒子束, 2009, 21(9):1295-1300)
    [5]
    LI Tao, QI Fudi, YUE Guming, et al. Raman lidar system for the measurements of water vapor mixing ratio in the atmosphere[J]. Chin. J. Atmos. Sci., 2000, 24(6):843-854(李陶, 戚福第, 岳古明, 等. 大气中水汽混合比的Raman激光雷达探测[J]. 大气科学, 2000, 24(6):843-854)
    [6]
    ZHAO Yuefeng, ZHANG Yinchao, HONG Guanglie, et al. Lidar system for detecting the atmospheric CO2[J]. Chin. J. Quantum Electron., 2006, 23(3):355-359(赵曰峰, 张寅超, 洪光烈, 等. 大气CO2含量分布激光雷达监测[J]. 量子电子学报, 2006, 23(3):355-359)
    [7]
    HU Shunxing, CHEN Yafeng, LIU Qiuwu, et al. Differential absorption lidar system for background atmospheric SO2 and NO2 measurements[J]. Chin. J. Lasers, 2018, 45(9):09110091(胡顺星, 陈亚峰, 刘秋武, 等. 差分吸收激光雷达系统探测背景大气SO2和NO2[J]. 中国激光, 2018, 45(9):09110091)
    [8]
    YUAN Ke'e, ZHANG Shiguo, HU Shunxing, et al. Measurements of ozone using ultraviolet differential absorption lidar in low troposphere[J]. High Power Laser Part. Beams, 2013, 25(3):553-556(苑克娥, 张世国, 胡顺星, 等. 对流层低层臭氧的差分吸收激光雷达测量[J]. 强激光与粒子束, 2013, 25(3):553-556)
    [9]
    HU Xiong, YAN Zhaoai, GUO Shangyong, et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chin. Sci. Bull., 2011, 56(3):247-253(胡雄, 闫召爱, 郭商勇, 等. 钠荧光多普勒激光雷达测量中间层顶区域大气温度[J]. 科学通报, 2011, 56(3):247-253)
    [10]
    CHENG Xuewu, YANG Guotao, YANG Yong, et al. Na Layer and K Layer simultaneous observation by lidar[J]. Chin. J. Lasers, 2011, 38(2):0214001(程学武, 杨国韬, 杨勇, 等. 高空钠层、钾层同时探测的激光雷达[J]. 中国激光, 2011, 38(2):0214001)
    [11]
    GORDON I E, ROTHMAN L S, HILL C, et al. The HITRAN2016 molecular spectroscopic database[J]. J. Quant. Spectrosc. Ra. Trans., 2017, 203:3-63
    [12]
    SHI Guangyu. Atmospheric Radiology[M]. Beijing: Science Press, 2007(石广玉. 大气辐射学[M]. 北京: 科学出版社, 2007)
    [13]
    (杨瑞科, 马春林, 韩香娥, 等. 激光在大气中传输衰减特性研究[J]. 红外与激光工程, 2007, 36(z2):415-418

    YANG Ruike, MA Chunlin, HAN Xiang'e, et al. Study of the attenuation characteristics of laser propagation in the atmosphere[J]. Infrared Laser Eng., 2007, 36(z2):415-418
    [14]
    DENG Pan, ZHANG Tianshu, CHEN Wei, et al. Estimating noise scale factor and SNR of atmospheric lidar[J]. Infrared Laser Eng., 2016, 45(S1):88-93(邓潘, 张天舒, 陈卫, 等. 大气探测激光雷达噪声比例因子及信噪比的估算[J]. 红外与激光工程, 2016, 45(S1):88-93)
    [15]
    LIU Zhaoyan, WILLIAM Hunt, MARK Vaughan, et al. Estimating random errors due to shot noise in backscatter lidar observations[J]. Appl. Opt., 2006, 45(18):4437-4447
    [16]
    ZHANG Chaoyang, SU Lin, CHEN Liangfu. Retrieval and analysis of aerosol lidar ratio at several typical regions in China[J]. Chin. J. Lasers, 2013, 40(5):227-232(张朝阳, 苏林, 陈良富. 中国典型地区气溶胶激光雷达比反演分析[J]. 中国激光, 2013, 40(5):227-232)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(930) PDF Downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return