Volume 33 Issue 5
Sep.  2013
Turn off MathJax
Article Contents
QI Yalong, LI Huijun, XIANG Jie, MAN Haijun. Periodic Variations of Drag Coefficient for the ANDE Spherical Satellites During its Lifetime[J]. Chinese Journal of Space Science, 2013, 33(5): 525-531. doi: 10.11728/cjss2013.05.525
Citation: QI Yalong, LI Huijun, XIANG Jie, MAN Haijun. Periodic Variations of Drag Coefficient for the ANDE Spherical Satellites During its Lifetime[J]. Chinese Journal of Space Science, 2013, 33(5): 525-531. doi: 10.11728/cjss2013.05.525

Periodic Variations of Drag Coefficient for the ANDE Spherical Satellites During its Lifetime

doi: 10.11728/cjss2013.05.525
More Information
  • Author Bio:

    QI Yalong, E-mail: qiyalongjr@126.com

  • Received Date: 2012-11-08
  • Rev Recd Date: 2013-03-23
  • Publish Date: 2013-09-15
  • A drag coefficient (CD) inversion method is introduced to study the variations of the drag coefficient for orbital satellites with spherical geometry. Drag coefficients of the four micro satellites in the Atmospheric Neutral Density Experiment (ANDE) are compiled out with this new method. The Lomb-Scargle Periodgram (LSP) analysis of the four ANDE satellites' CD series has shown that there are obvious 5, 7, 9, and 27 days' period in those data. Interesting results are found through comparing the LSP analysis with series of the daily solar radio flux at 10.7 cm (F10.7 index), the Ap index, and the daily averaged solar wind speed at 1AU. All series in the same time interval have an obvious period of about 27 days, which has already been explained as the association with the 27 days' solar rotation. The oscillating periods less than 27 days are found in series of CD, Ap and solar wind speed at 1AU, e.g., the 5, 7, 9 days period. However, these short periods disappeared in the time series of F10.7 index. The same periodicities of 5, 7, 9 days in Ap and solar wind are presented at the same time interval during the declining phase of solar cycle 23. While in the ascending phase of solar cycle 24, these short oscillations are not so obvious as that in the declining phase of solar cycle 23. These results provide definite evidence that the CD variations with period of 5, 7 and 9 days are produced by a combination of space weather effects caused by the solar wind and geomagnetic activity.

     

  • loading
  • [1]
    Wolverton R W. Flight Performance Handbook for Orbital Operations[M]. New York: Wiley, 1963. 336-359
    [2]
    Izakov M N. Some problems of investigating the structure of the upper atmosphere and constructing its models[M]//Space Res. 5. Amsterdam: North Holland Publ. Co., 1965. 1191-1213
    [3]
    Cook G E. Satellite drag coefficients[J]. Planet. Space Sci., 1965, 13(10):929-946
    [4]
    Cook G E. Drag coefficients of spherical satellites[J]. Ann. Geophys., 1966, 22:53-64
    [5]
    King-Hele D. Satellite Orbits in an Atmosphere: Theory and Applications[M]. Glasgow: Kluwer Academic Publishers, 1987
    [6]
    Jacchia L G. New Static Models of the Thermosphere and Exosphere With Empirical Temperature Profiles[M]. Cambridge Mass.: Smithsonian Astrophysical Observatory, 1970
    [7]
    Moe K,MoeMM, Doornbos E. Outstanding issues related to thermosphere measurements and Modeling[C]//38th COSPAR Meeting. Bremen: COSPAR, 2010
    [8]
    Pardini C, Anselmo L, Moe K, Moe M M. Drag and energy accommodation coefficients during sunspot maximum[J]. Adv. Space Res., 2009, doi: 10.1016/j.asr.2009.08.034
    [9]
    Moe K, Moe M M. Gas-surface interactions and satellite drag coefficients[J]. Plan. Space Sci., 2005, 53:793-801
    [10]
    Moe K, Moe M M, Rice C J. Simultaneous analysis of multi-instrument satellite measurements of atmospheric density[J]. J. Spacecr. Rockets, 2004, 41:849-853
    [11]
    Moe K, Moe M M. Gas-surface interactions in low-Earth orbit[C]//27th International Symposium on Rarefield Gas Dynamics. AIP Conf. Proc., 2010, 1333:1313-1318
    [12]
    Pardini C, Moe K, Anselmo L. Thermospheric density model biases at the 23rd sunspot maximum[J]. Planet. Space Sci., doi: 10.1016/j.pss.2012.03.004
    [13]
    Nicholas A C, Picone J M, Emmert J, De Young J, Healy L,Wasiczko L. Preliminary Results From the Atmospheric Neutral Density Experiment Risk Reduction Mission[R]. AAS 07-265
    [14]
    Bowman B R, Moe K. Drag coefficient variability at 175-500 km from the orbit decay analysis of spheres[C]//AAS/AIAA Astrodynamics Specialist Conference, AAS 2005-257. Lake Tahoe, California: AAS/ AIAA, 2005
    [15]
    Lomb N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophys. Space Sci., 1976, 39:447-462
    [16]
    Scargle J D. Studies in astronomical time series analysis II. Statistical aspects of spectral analysis of unevenly spaced data[J]. Astrophys. J., 1982, 263:835-853
    [17]
    Kozai Y. The motion of a close Earth satellite[J]. Astron. J., 1959, 64(1274):367-377
    [18]
    Bowman B R, Tobiska W K, Marcos F A, Huang C Y, Lin C S, Burke W J. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//AIAA/AAS Astrodynamics Specialist Conference, AIAA 2008-6438. Honolulu, Hawaii: AIAA/AAS, 2008
    [19]
    Picone J M, Emmert J T, Lean J L. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets[J]. J. Geophys. Res., 2005, 110, A03301, doi: 10.1029/2004JA010585
    [20]
    Roble R G, Ridley E C, Dickinson R E. On the global mean structure of the thermosphere[J]. J. Geophys. Res., 1987, 92:8745-8758
    [21]
    Sheeley N R Jr, Harvey J W, Feldman W C. Coronal holes, solar wind streams and recurrent geomagnetic disturbances: 1973-1976. Solar Phys., 1976, 49:271-278
    [22]
    Neupert W M, Pizzo V. Solar coronal holes as sources of recurrent geomagnetic disturbance[J]. J. Geophys. Res., 1974, 79(25):3701-3709
    [23]
    Borovsky J E, Denton M H. Differences between CMEdriven storms and CIR-driven storms[J]. J. Geophys. Res., 2006, 111, A07S08, doi: 10.1029/2005JA011447
    [24]
    Tsurutani B T, Gonzalez W D, Gonzalez A L C, et al. Corotating solar wind streams and recurrent geomagnetic activity: A review[J]. J. Geophys. Res., 2006, 111, A07S01, doi: 10.1029/2005JA011273
    [25]
    Marcos F A, Gillette D F, Robinson E C. Evaluation of selected global thermospheric density models during low solar flux conditions[J]. Adv. Space Res., 1983, 3:85-89
    [26]
    Hedin A E. MSIS-86 thermospheric model[J]. J. Geophys. Res., 1987, 92:4649-4662
    [27]
    Lei J, Thayer J P, Forbes J M, Sutton E K, Nerem R S. Rotating solar coronal holes and periodic modulation of the upper atmosphere[J]. Geophys. Res. Lett., 2008, 35, L10109, doi: 10.1029/2008GL033875
    [28]
    Nayar S R, Sanalkumaran V N, Radhika V N, Revathy K. Short-period features of the interplanetary plasma and their evolution[J]. Solar Phys., 2001, 201:405-417
    [29]
    Blanc M, Richmond A D. The ionospheric disturbance dynamo[J]. J. Geophys. Res., 1980, 85:1669-1686
    [30]
    Pogoreltsev A I, Vlasov A A, Frohlich K, Jaccobi C. Planetary waves in coupling the lower and upper atmosphere[J]. J. Atmos. Solar Terr. Phys., 2007, 69:2083-2101
    [31]
    Hapgood M A, Lockwood M, Bowe G A, Willis D M, Tulunay Y K. Variability of the interplanetary medium at 1 a.u. over 24 years: 1963-1986[J]. Planet. Space Sci., 1991, 39:411-423
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2326) PDF Downloads(1549) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return