Volume 35 Issue 2
Mar.  2015
Turn off MathJax
Article Contents
LÜ Jingtian, ZHANG Xiaoxin, LIN Ruilin, HE Fei, JIANG Yong. Dynamic Distribution Features of Energetic Proton in South Atlantic Anomaly Based on the Observation of SAMPEX[J]. Chinese Journal of Space Science, 2015, 35(2): 192-202. doi: 10.11728/cjss2015.02.192
Citation: LÜ Jingtian, ZHANG Xiaoxin, LIN Ruilin, HE Fei, JIANG Yong. Dynamic Distribution Features of Energetic Proton in South Atlantic Anomaly Based on the Observation of SAMPEX[J]. Chinese Journal of Space Science, 2015, 35(2): 192-202. doi: 10.11728/cjss2015.02.192

Dynamic Distribution Features of Energetic Proton in South Atlantic Anomaly Based on the Observation of SAMPEX

doi: 10.11728/cjss2015.02.192
  • Received Date: 2014-03-03
  • Rev Recd Date: 2014-10-14
  • Publish Date: 2015-03-15
  • After lots of experiments by using 19~27MeV differential energetic proton data based on the observation of SAMPEX from July of 1992 to June of 2004, it is found that the change of F10.7 and altitude have a great influence on the distribution of differential energetic proton flux in South Atlantic Anomaly. During the geomagnetic quiet time at 540±25km altitude, the energetic proton flux in South Atlantic Anomaly decreased with the increasing of F10.7, and the variation trend was flat when F10.7≥115sfu. It is found that there was obviously an anti-correlation between the absolute value of SYM-H and the differential energetic proton flux in South Atlantic Anomaly for storms with SYM-H<-50, and also there was a lasting effect on differential energetic proton flux in South Atlantic Anomaly. In addition, the proton flux could be significantly reduced in South Atlantic Anomaly during the main phase, while the proton flux showed a substantial resuming trend in the recovery phase of geomagnetic storms.

     

  • loading
  • [1]
    Li X, Baker D N, Kanekal S G, et al. Long term measurements of radiation belts by SAMPEX and their variations[J]. Geophys. Res. Lett., 2001, 28(20):3827-3830
    [2]
    Shi Liqin, Lin Ruilin, Liu Siqing, et al. Effect of solar cycle activity on high energy proton of inner radiation belt in the low altitude region[J]. Chin. J. Space Sci., 2012, 32(6): 804-811
    [3]
    Miyoshi Y, Morioka A, Misawa H, et al. Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations[J]. J. Geophys. Res.: Space Phys., 2003, 108(A1): SMP 3-1-SMP 3-15
    [4]
    Looper M D, Blake J B, Mewaldt R A. Response of the inner radiation belt to the violent Sun-Earth connection events of October—November 2003[J]. Geophys. Res. Lett., 2005, 32 ; L030506, doi: 10.1029/2004GL021502
    [5]
    Zou H, Zong Q G, Parks G K, et al. Response of high-energy protons of the inner radiation belt to large magnetic storms[J]. J. Geophys. Res.: Space Phys., 2011, 116, A10229
    [6]
    Ginet G P, O'Brien T P, Huston S L, et al. AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment[J]. Space Sci. Rev., 2013, 179(1-4):579-615
    [7]
    Meffert J D, Gussenhoven M S. CRRESPRO documentation[R]. Bedford, Massachusetts: Phillips Laboratory, Hanscom Air Force Base, 1994
    [8]
    Huston S L, Kuck G A, Pfitzer K A. Low altitude trapped radiation model using TIROS/NOAA data[J]. Geophys. Monog. Ser., 1996, 97:119-122
    [9]
    Boscher D M, Bourdarie S A, Friedel R H W, et al. Model for the geostationary electron environment: POLE[J]. IEEE Trans. Nucl. Sci., 2003, 50(6):2278-2283
    [10]
    Heynderickx D, Kruglanski M, Pierrard V, et al. A low altitude trapped proton model for solar minimum conditions based on SAMPEX/PET data[J]. IEEE Trans. Nucl. Sci., 1999, 46(6):1475-1480
    [11]
    Roeder J L, Chen M W, Fennell J F, et al. Empirical models of the low-energy plasma in the inner magnetosphere[J]. Space Weather, 2005, 3, S12B06
    [12]
    Hartmann G A, Pacca I G. Time evolution of the South Atlantic magnetic anomaly[J]. Anais Acad. Bras. Ciěnc., 2009, 81(2):243-255
    [13]
    Li Baoquan, Zhu Guangwu, Wang Shijing, et al. The space particle composition detector on board FY-1C satellite and the analysis of particle radiation in the South Atlantic Anomaly Region[J]. Chin. J. Geophys., 2004, 47(6):1074-1078
    [14]
    Liu Siqing, Liu Jing, Shi Linqin, et al. m Space environment support for the SZ-5 spacecraft[J]. Physics, 2004, 33(5):359-366
    [15]
    Badhwar G D. Drift rate of the South Atlantic anomaly[J]. J. Geophys. Res.: Space Phys., 1997, 102 (A2): 2343-2349
    [16]
    Hell N, Bamberg R S. The Evolution of the South Atlantic Anomaly Measured by RHESSI[M]. Erlangen-Nürnberg: Elangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität, 2010
    [17]
    Pu Zuyin, Fang Xiaohua, Jiao Weixin. Study on inner radiation belt space climate[J]. Science China: A, 2000, 1:131-135
    [18]
    Lin C S, Yeh H C. Satellite observations of electric fields in the South Atlantic anomaly region during the July 2000 magnetic storm[J]. J. Geophys. Res.: Space Phys., 2005, 110, A03305
    [19]
    Asikainen T, Mursula K. Filling the South Atlantic anomaly by energetic electrons during a great magnetic storm[J]. Geophys. Res. Lett., 2005, 32(16):1-4
    [20]
    Asikainen T, Mursula K. Energetic electron flux behavior at low L-shells and its relation to the South Atlantic Anomaly[J]. J. Atmos. Solar-Terr. Phys., 2008, 70 (2):532-538
    [21]
    Barnes C E, Ott M N, Johnston A H, et al. Recent photonics activities under the NASA electronic parts and packaging (NEPP) program[C]//International Symposium on Optical Science and Technology. Seattle: International Society for Optics and Photonics, 2002:189-204
    [22]
    Wang Tongquan, Dai Hongyi, Shen Yongping, et al. Calculation of cosmic high energy proton induced single event upset rate[J]. J. Nat. Univ. Def. Tech., 2002, 24(2):11-13
    [23]
    Du Heng, Ye Zonghai. LEO spacecraft Space Environment Manual[M]. Beijing: National Defense Industry Press, 1996
    [24]
    Gu Shifen, Zang Zhenqun, Shi Linqin, et al. Study on SEU occurred on board of several space shuttles[J]. Chin. J. Space Sci., 1997, 18(3):253-260
    [25]
    Baker D N, Mason G M, Figueroa O, et al. An overview of the solar anomalous, and magnetospheric particle explorer (SAMPEX) mission[J]. IEEE Trans. Geosci. Remote Sens., 2014, 31(3):531-541
    [26]
    Hudson M K, Elkington S R, Lyon J G, et al. Simulations of radiation belt formation during storm sudden commencements[J]. J. Geophys. Res.: Space Phys., 1997, 102 (A7):14087-14102
    [27]
    Young S L, Denton R E, Anderson B J, et al. Magnetic field line curvature induced pitch angle diffusion in the inner magnetosphere[J]. J. Geophys. Res.: Space Phys., 2008, 113, A03210
    [28]
    Summers D, Thorne R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms[J]. J. Geophys. Res.: Space Phys., 2003, 108, SMP2
    [29]
    He Zhaoguo. Research on the enhancements of energetic outer radiation belt electron fluxes driven by chorus wave during magnetic storm[D]. Changsha: Changsha University of Science and Technology, 2011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1108) PDF Downloads(1377) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return