Volume 36 Issue 2
Mar.  2016
Turn off MathJax
Article Contents
CHENG Zhengwei, SHI Jiankui, LIU Zhenxing. Statistical Study on IMF By Control of the FAC in the Magnetotail[J]. Chinese Journal of Space Science, 2016, 36(2): 139-146. doi: 10.11728/cjss2016.02.139
Citation: CHENG Zhengwei, SHI Jiankui, LIU Zhenxing. Statistical Study on IMF By Control of the FAC in the Magnetotail[J]. Chinese Journal of Space Science, 2016, 36(2): 139-146. doi: 10.11728/cjss2016.02.139

Statistical Study on IMF By Control of the FAC in the Magnetotail

doi: 10.11728/cjss2016.02.139
  • Received Date: 2015-01-29
  • Rev Recd Date: 2015-05-29
  • Publish Date: 2016-03-15
  • Using the magnetic field data from Cluster spacecraft and the Interplanetary Magnetic Field (IMF) data from ACE spacecraft, the effect of IMF By component (IMF |By|<10nT) on the Field-Aligned Current (FAC) occurrence rate and density at the Plasma Sheet Boundary Layer (PSBL) in the magnetotail is investigated. 1657 FAC cases from July to October in 2001 and 2004 were selected for analysis. We present that the IMF By component plays a very important role in controlling the occurrence rate and density of the FAC in the PSBL in the magnetotail. The FAC occurrence is higher (about 55.6%) when the IMF By is positive compared with that when the IMF By is negative. When the IMF |By| is more than 4nT, the occurrence rate of FAC is about 77.4%. The FAC occurrence in the magnetotail has an obvious positive correlation with the IMF |By|, and when the IMF By is positive, this correlation is better. The FAC density also has an obvious positive correlation with the IMF |By|, and when the IMF By is positive, this correlation is better. The above results show that the IMF By component has strong control on the occurrence and density of the FAC cases in the magnetotail, and that the change of FAC is closely associated with the duskward IMF (the IMF By is positive).

     

  • loading
  • [1]
    ZMUDA A J, MARTIN J H, HEURING F T. Transverse magnetic disturbances at 1100 kilometers in the auroral region[J]. J. Geophys. Res., 1966, 66:5033-5045
    [2]
    CUMMINGS W D, DESSLER A J. Field-aligned currents in the magnetosphere[J]. J. Geophys. Res., 1967, 72:1007-1013
    [3]
    ERLANDSON R E, ZANETTI L J, POTEMRA T A, et al. IMF By dependence of region 1 Birkeland currents near noon[J]. J. Geophys. Res., 1988, 93:9804-9814
    [4]
    RICH F J, HARDY D A, REDUS R H, et al. Northward IMF and patterns of high-latitude precipitation and field aligned currents: the February 1986 storm[J]. J. Geophys. Res., 1990, 95:7893
    [5]
    CHENG Zhengwei, SHI Jiankui, ZHANG Ziying, et al. Effect of interplanetary magnetic field on the field-aligned currents occurrence in the magnetotail[J]. Chin. J. Space Sci., 2013, 33(4):396-402 (程征伟, 史建魁, 张子迎, 等. 行星际磁场对磁尾场向电流发生率的影响[J]. 空间科学学报, 2013, 33(4):396-402)
    [6]
    IIJIMA T A, POTEMRA T A, ZANETTI L J, et al. Largescale Birkeland currents in the dayside polar region during strongly northward IMF: a new Birkeland current system[J]. J. Geophys. Res., 1984, 89:7441
    [7]
    JIAO Weixin, PU Zuyin. Dependence of field-aligned currents on the orientation of the interplanetary magnetic field[J]. Chin. J. Space Sci., 2000, 20(2):144-149 (焦维新, 濮祖荫. 大尺度场向电流的控制因素[J]. 空间科学学报, 2000, 20(2):144-149)
    [8]
    JUUSOLA L, KAURISTIE K, AMM O, et al. Statistical dependence of auroral ionospheric currents on solar wind and geomagnetic parameters from 5 years of CHAMP satellite data[J]. Ann. Geophys., 2009, 27:1005-1017
    [9]
    GJERLOEV J W, OHTANI1 S, IIJIMA T, et al. Characteristics of the terrestrial field-aligned current system[J]. Ann. Geophys., 2011, 29:1713-1729
    [10]
    WEIMER D R. Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data[J]. J. Geophys. Res., 2001, 106:12889-12902
    [11]
    CHENG Z W, SHI J K, DUNLOP M, et al. Influences of the interplanetary magnetic field clock angle and cone angle on the field-aligned currents in the magnetotail[J]. Geophys. Res. Lett., 2013, 40(20):5355-5359. DOI: 10.1002/2013GL056737
    [12]
    KAYMAZ Z, SISCOE G L, LUHMANN J G, et al. Interplanetary magnetic field control of magnetotail magnetic field geometry: IMP 8 observations[J]. J. Geophys. Res., 1994, 99:11113-11126
    [13]
    IIJIMA T, FUJII R, POTEMRA T A, et al. Field-aligned currents in the south polar cusp and their relationship to the interplanetary magnetic field[J]. J. Geophys. Res., 1978, 81:2165-2174
    [14]
    TAGUCHI S, SUGIURA M, WINNINGHAM J D, et al. Characteristics of the IMF By-dependent field-aligned currents in the cleft region based on DE 2 observations[J]. J. Geophys. Res., 1993, 98:1393-1407
    [15]
    MASAKAZU W, SOFKO G J. Dayside four-sheet field-aligned current system during IMF By-dominated periods[J]. J. Geophys. Res., 2009, 114, A03208
    [16]
    YAMAUCHI M, ARAKI T. The interplanetary magnetic field By-dependent field-aligned current in the dayside polar cap under quiet conditions[J]. J. Geophys. Res., 1989, 94:2684-2690
    [17]
    ZHOU X W, RUSSELL C T, LE G. Local time interplanetary magnetic field By dependence of field-aligned currents at high altitudes[J]. J. Geophys. Res., 2000, 105:2533-2539
    [18]
    TAGUCHI S. By-controlled field-aligned currents near midnight auroral oval during northward interplanetary magnetic field[J]. J. Geophys. Res., 1992, 97(A8):12231-12243
    [19]
    TAGUCHI S, SUGIURA M, IYEMORI T, et al. By-controlled convection and field-aligned currents near midnight auroral oval for northward interplanetary magnetic field[J]. J. Geophys. Res., 1994, 99:6027-6044
    [20]
    SHI J K, CHENG Z W, ZHANG T L, et al. Properties of field aligned current in plasma sheet boundary layers in magnetotail: Cluster observation[J]. Chin. Phys. Lett., 2009, 26(2):029401
    [21]
    CHENG Z W, SHI J K, ZHANG T L, et al. The relations between density of FACs in the plasma sheet boundary layers and Kp index[J]. Sci. China: Tech. Sci., 2011, 54:2987-2992
    [22]
    CHENG Z W, SHI J K, ZHANG T L, et al. Field-aligned currents at the PSBL on 17 August 2001 storm: relationships with solar wind conditions[J]. Chin. Phys. Lett., 2011, 28(9):099401
    [23]
    DUNLOP M W, BALOGH A, GLASSMEIER K H. Four-point Cluster application of magnetic field analysis tools: the Curlometer[J]. J. Geophys. Res., 2002, 107(A11):1384-1397
    [24]
    ROBERT P, DUNLOP M W. Analysis Methods for Multi-spacecraft Data[M]. Netherlands: ESA Publications Division, 1998:395-418
    [25]
    XIAO C J, PU Z Y, HUANG Z Y, et al. Multiple flux rope events at the high latitude magnetopause on January 26, 2001: current density calculating[J]. Chin. J. Geophys. 2004, 47(4):555-561 (肖池阶, 濮祖荫, 黄宗英, 等. 2001年1月26日磁层顶多重磁通量管事件的观测研究-空间电流密度计算及 分析[J]. 地球物理学报, 2004, 47(4):555-561)
    [26]
    SHI J K, CHENG Z W, ZHANG T L, et al. South-north asymmetry of field-aligned currents in the magnetotail observed by Cluster[J]. J. Geophys. Res., 2010, 115, A07228. DOI:10.10 29/2009JA014446
    [27]
    OHTANI S, KOKUBUN S, ELPHIC R C, et al. Field-aligned current signatures in the near-tail region: 1. ISEE observations in the plasma sheet boundary layer[J]. J. Geophys. Res., 1988, 93:9709-9720
    [28]
    COLLIER M R, SLAVIN J A, LEPPING R P, et al. Timing accuracy for the simple planar propagation magnetic field structures in the solar wind[J]. Geophys. Res. Lett., 1998, 25:2509-2512
    [29]
    YAN G Q, SHEN C, LIU Z X, et al. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations[J]. Ann. Geophys., 2005, 90:2961-2966
    [30]
    ZHANG Z Y, SHI J K, CHENG Z W, et al. Field-aligned electrons in polar region observed by Cluster on 30 September 2001[J]. Chin. Phys. Lett., 2012, 29(9):099401
    [31]
    SHI J K, ZHANG Z Y, TORKAR K, et al. Temporal and spatial scales of a high-flux electron disturbance in the cusp region: Cluster observations[J]. J. Geophys. Res. Space Phys., 2014, 119:4536-4543
    [32]
    ROMANOVA E B, ZHEREBTSOV G A, RATOVSKY K G, et al. Response of the ionospheric F2-region over Irkutsk and Hainan to strong geomagnetic storms[J]. Chin. J. Space Sci., 2013, 33(5):494-500
    [33]
    RATOVSKY K G, SHI J K, OINATS A V et al. Comparison of diurnal, seasonal and solar cycle variations of high-latitude, mid-latitude and low-latitude ionosphere[J]. Chin. J. Space Sci., 2014, 34(2):143-153
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1228) PDF Downloads(1098) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return