Volume 36 Issue 2
Mar.  2016
Turn off MathJax
Article Contents
TANG Lei, HUANG Chunming. Mid-latitude Planetary Waves Observation from MST Radar Measurements in the Troposphere and Lower Stratosphere[J]. Chinese Journal of Space Science, 2016, 36(2): 175-187. doi: 10.11728/cjss2016.02.175
Citation: TANG Lei, HUANG Chunming. Mid-latitude Planetary Waves Observation from MST Radar Measurements in the Troposphere and Lower Stratosphere[J]. Chinese Journal of Space Science, 2016, 36(2): 175-187. doi: 10.11728/cjss2016.02.175

Mid-latitude Planetary Waves Observation from MST Radar Measurements in the Troposphere and Lower Stratosphere

doi: 10.11728/cjss2016.02.175
  • Received Date: 2015-06-30
  • Rev Recd Date: 2015-12-28
  • Publish Date: 2016-03-15
  • Characteristics of the Planetary Waves (PW) in the Troposphere and Lower Stratosphere (TLS) were investigated with Mesosphere-Stratosphere-Troposphere (MST) radar wind measurements in Xianghe (116.9°E, 39.8°N) from January 2012 to December 2014. Spectral analyses show that the TLS region is dominated by quasi-16-day and quasi-10-day PW, while the former ones are more significant. In the troposphere regions (above 17km height), the PW with dynamic periods are primarily observed, which last less than three months and don't indicate significant seasonal variation. Meanwhile, the amplitudes of the PW in the zonal direction exceed those in the meridional direction. In the lower stratosphere regions, intense PW mainly occur in the zonal component in winter. The amplitudes in the stratosphere are generally smaller than those in the troposphere. This paper also discusses the propagation characteristics of PW based on MST radar data and MERRA reanalysis data. The result shows that zonal component of the quasi-16-day PW observed in February and March 2014 propagated eastward with a zonal wave number of 2 (the horizontal wave length was about 15324.7km). The corresponding phase velocity was 11.1m·s-1 (positive eastward). The quasi-16-day PW propagated upward vertically with a 64km vertical wave length. In addition, the observation in May 2014 showed that the quasi-10-day PW in the zonal component propagated eastward with a zonal wave number of 1. Its horizontal wave length, phase velocity and vertical wave length were 30649.4km, 35.5m·s-1 and 50km respectively.

     

  • loading
  • [1]
    TAN Benkui. Advances of atmospheric of Rossby waves dynamics[J]. Acta Meteor. Sin., 2008, 66(6):870-879 (谭本馗. 大气Rossby波动力学的研究进展[J]. 气象学报, 2008, 66(6):870-879)
    [2]
    LI Aibing, ZHANG Lifeng, ZHANG Liang, et al. The effects of zonal non-uniform basic flow on adjustment of atmospheric long-wave[J]. Chin. J. Geophys., 2012, 55(4):1104-1113 (黎爱兵, 张立凤, 张亮, 等. 纬向非均匀基流对大气长波调整的作用[J]. 地球物 理学报, 2012, 55(4):1104-1113)
    [3]
    CHARNEY J G, DRAZIN P G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere[J]. J. Geophys. Res., 1961, 66(1):83-109
    [4]
    ELIASSEN A, PALM E. On the transfer of energy in stationary mountain waves[J]. Geof. Publ. Norske Vid.-Akad. Oslo, 1961, 22(3):1-23
    [5]
    HUANG C M, ZHANG S D, YI F. Intensive radiosonde observations of the diurnal tide and planetary waves in the lower atmosphere over Yichang (111.18° E, 30.42° N), China[J]. Ann. Geophys., 2009, 27(3):1079-1095
    [6]
    LAWRENCE A R, JARVIS M J. Simultaneous observations of planetary waves from 30 to 220km[J]. J. Atmos. Solar-Terr. Phys., 2003, 65(6):765-777
    [7]
    MERZLYAKOV E G, SOLOVJOVA T V, YUDAKOV A A. The interannual variability of a 5~7 day wave in the middle atmosphere in autumn from ERA product data, Aura MLS data, and meteor wind data[J]. J. Atmos. Solar-Terr. Phys., 2013, 102(9):281-289
    [8]
    SMITH A K. The origin of stationary planetary waves in the upper mesosphere[J]. J. Atmos. Sci., 2003, 60(24): 3033-3041
    [9]
    HUANG K M, LIU A Z, ZHANG S D, et al. A nonlinear interaction event between a 16-day wave and a diurnal tide from meteor radar observations[J]. Ann. Geophys., 2013, 31(11):2039-2048
    [10]
    LI Yanjie, LI Jianping. Propagation of planetary waves in the horizontal non-uniform basic flow[J]. Chin. J. Geophys., 2012, 55(2):361-371 (李艳杰,李建平.水平非均匀基流中行星波的传播[J]. 地球物理学报, 2012, 55(2):361-371)
    [11]
    MTHEMBU S H, SIVAKUMAR V, MITCHELL N J, et al. Studies on planetary waves and tide interaction in the mesosphere/lower thermosphere region using meteor RADAR data from Rothera (68°S, 68°W), Antarctica[J]. J. Atmos. Solar-Terr. Phys., 2013, 102(1):59-70
    [12]
    LU Xian, ZHANG Shaodong. Radiosonde observation of planetary waves in the lower atmosphere over the center China[J]. Chin. J. Space Sci., 2005, 25(6):529-535 (鲁娴, 张绍东. 中国中部低层大气行星波无线电探空仪的观测研究[J]. 空 间科学学报, 2005, 25(6):529-535)
    [13]
    WANG Rui, ZHANG Shaodong, YI Fan. Radiosonde observations of high-latitude planetary waves in the lower atmosphere[J]. Sci. China: Earth Sci., 2010, 40(5):603-617 (王睿, 张绍东, 易帆. 高纬地区低层大气行星波的无线电探空仪观测研究[J]. 中国科学: 地球科学, 2010, 40(5):603-617)
    [14]
    ZHANG Xiaofang, YAN Wei. Advances in Studies on the exploration of the middle and upper atmosphere[J]. Sci. Meteor. Sin., 2007, 27(4):457-463 (张晓芳, 严卫. 中高层大气探测技术的研究进展[J]. 气象科学, 2007, 27(4):457-463)
    [15]
    LIU Libo, WAN Weixing. A brief overview on the issue on space physics and space weather[J]. Chin. J. Geophys., 2014, 57(11):3493-3501 (刘立波, 万卫星. 我国空间物理研究进展[J]. 地球物理学报, 2014, 57(11):3493-3501)
    [16]
    MA Guanglin, HU Xiong, XU Qingchen, et al. Investigation and application of FCA method for Langfang MF radar wind retrievals[J]. Chin. J. Space Sci., 2011, 31(5):618-626 (马广林,胡雄, 徐轻尘,等. 廊坊中频雷达风场FCA算法的研究及应用[J]. 空间科学学报, 2011, 31(5):618-626)
    [17]
    ZHAO Jiaying, XU Haiming. Comparison of wind velocity among reanalysis and radiosone datasets over China[J]. Climat. Environ. Res., 2014, 19(5):587-600 (赵佳莹, 徐海明. 中国区域探空资料与再分析资料风速场的对比分析[J]. 气候与环境研究, 2014, 19(5):587-600)
    [18]
    HUANG C, ZHANG S, ZHOU Q, et al. WHU VHF radar observations of the diurnal tide and its variability in the lower atmosphere over Chongyang (114.14°E, 29.53°N), China[J]. Ann. Geophys., 2015, 33(7):865-874
    [19]
    GLYNN E F, CHEN J, MUSHEGIAN A R. Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms[J]. Bioin-formatics, 2006, 22(3):310-316
    [20]
    ZHANG S D, YI F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E) China[J]. Ann. Geophys., 2005, 23(3):665-673
    [21]
    HUANG Ronghui, LIU Yong, HUANGFU Jingliang, et al. Characteristics and internal dynamical causes of the interdecadal variability of East Asian winter monsoon near the late 1990s[J]. Chin. J. Atmos. Sci., 2014, 38(4):627-644 (黄荣辉, 刘永, 皇甫静亮,等. 20世纪90年代末东亚冬季风年代际变化特征及其内动力成因[J]. 大气科学, 2014, 38(4):627-644)
    [22]
    HUANG R H, GAMBO K. On other wave guide in stationary planetary wave propagations in winter northern hemisphere[J]. Sci. China, 1984, 27(6):610-624
    [23]
    CHEN Wen. The interannual variations of propagation of quasi-stationary planetary waves in the northern hemisphere winter[J]. Progr. Nat. Sci., 2006, 16(4):485-489 (陈文. 北半球冬季准定常行星波传播的年 代际变化[J]. 自然科学进展, 2006, 16(4):485-489)
    [24]
    YANG Lei, CHEN Wen, HUANG Ronghui. The data analysis and numerical simulation of the climatology of quasi-stationary planetary waves in the northern hemisphere[J]. Chin. J. Atmos. Sci., 2006, 30(3):361-376 (杨蕾, 陈文, 黄荣辉. 北半球准定常行星波气候平均态的资料分析和数值模拟[J]. 大气科学, 2006, 30(3):361-376)
    [25]
    MATSUNO T. Vertical propagation of stationary planetary waves in the winter northern hemisphere[J]. J. Atmos. Sci., 1970, 27(1):871-883
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1363) PDF Downloads(1231) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return