Volume 36 Issue 6
Nov.  2016
Turn off MathJax
Article Contents
YAN Xingya, CHEN Hongfei, YU Xiangqian, ZOU Hong, SHI Weihong. The Southward and Northward Difference of Proton Flux in South Atlantic Anomaly[J]. Chinese Journal of Space Science, 2016, 36(6): 888-896. doi: 10.11728/cjss2016.06.888
Citation: YAN Xingya, CHEN Hongfei, YU Xiangqian, ZOU Hong, SHI Weihong. The Southward and Northward Difference of Proton Flux in South Atlantic Anomaly[J]. Chinese Journal of Space Science, 2016, 36(6): 888-896. doi: 10.11728/cjss2016.06.888

The Southward and Northward Difference of Proton Flux in South Atlantic Anomaly

doi: 10.11728/cjss2016.06.888
  • Received Date: 2015-11-13
  • Rev Recd Date: 2016-03-31
  • Publish Date: 2016-11-15
  • This paper discusses the southward and northward proton distributions at 800km height of the South Atlantic Anomaly (SAA) according to the data detected by the >6.9MeV channel of the Medium Energy Proton and Electron Detector (MEPED) of NOAA N15, N16, N17 and N18 satellites. The data show that the counting rate of protons satisfies approximately the Gauss distribution with latitudes along a longitude while the number of southward protons is larger than the northward protons. MEPED has two heads on 0° and 90° directions. It can be used to evaluate the pitch-angle distribution of protons, then to eliminate the direction errors of the detectors between detecting the southward and the northward protons. The result shows that the southward protons are 20%~30% more than the northward protons in the latitudes of 13°S about 23°S along 40°W longitude. The phenomenon may be related to the lower mirror position in the southern hemisphere than in the northern hemisphere due to the geomagnetic anomaly. It causes more southward protons precipitating in SAA. Otherwise, the proton flux in SAA presents a local time dependency. The flux in the dayside is about 20% more than that in the nightside. It may be caused by the daily variation of the geomagnetic filed.

     

  • loading
  • [1]
    CHEN Guozhen, LIN Guocheng. The influence of charged particle radiation environment on the spacecraft at LEO[J]. Chin. Space Sci. Tech., 1994(6):43-48(陈国珍, 林国成. 低地球轨道带电粒子辐射环境对航天器的影响[J].中国空间科学技术, 1994(6):43-48)
    [2]
    TVERSKAYA L. Dynamics of the Earth's radiation belt[J]. Moscow Univ. Phys. Bull., 2010, 65(4):246-251
    [3]
    BADHWAR G D, KONRADI A. Conversion of omnidirectional proton fluxes into a pitch angel distribution[J]. J. Spacecraft Rockets, 1990, 27(3):350-352
    [4]
    EVANS H, DALY E. Anisotropies in the low altitude radiation environment[J]. J. Br. Interplanet. Soc., 1995, 48:149-151
    [5]
    GLAUERT S A, RICHARD B H. Calculation of pitch angle and energy diffusion coefficients with the PADIE code[J]. J. Geophys. Res: Space Phys., 2005, 110(A4). DOI: 10.1029/2004JA010851
    [6]
    KUZNETSOV N V, NIKOLAYEVA N I. Empirical model of pitch angel distributions of trapped protons on the inner boundary of the earth radiation belt[J]. Cosmic Res., 2012, 50(1):13-20
    [7]
    QIN M R, ZHANG X G, NI B B, et al. Solar cycle variations of trapped proton flux in the inner radiation belt[J]. J. Geophys. Res. Space Phys., 2014, 119(12):9658-9669
    [8]
    YANG X C, WANG S J, LIANG J B, et al. Multidirectional design research of the sun-synchronous orbit electron detectors[J]. J. Astron., 2013, 33(2):281-284(杨晓超, 王世金, 梁金宝, 等. 太阳同步轨道电子探测器的多方向设计研究[J]. 宇航学报, 2013, 33(2):281-284)
    [9]
    SLESNICK R S, BAKER D N, JAYNES A N, et al. Observations of inner radiation belt: CRAND and trapped solar protons[J]. J. Geophys. Res.: Space Phys., 2014, 119(8):6541-6552
    [10]
    ZHAO H, LI X, BLAKE J B, et al. Characteristic of pitch angel distribution of hundreds of keV eletrons in the slot region and inner radiation belt[J]. J. Geophys. Res.: Space Phys., 2014, 119(12):9543-9557
    [11]
    ZHAO H, LI X, BLAKE J B, et al. Peculiar pitch angel distribution of relativistic eletrons in inner radiation belt and slot region[J]. Geophys. Res. Lett., 2014, 41(41): 2250-2257
    [12]
    CAMPANA R, ORLANDINI M, MONTE E D, et al. The radiation environment in a low earth orbit: the case of BeppoSAX[J]. Exp. Astron., 2014, 37:599-613
    [13]
    HEIRTZLER J R. The future of the South Atlantic anomaly and implications for radiation damage in space[J]. J. Atmos. Solar-Terr. Phys., 2002, 64:1701-1708
    [14]
    EVANS D S, GREER M S. Polar orbiting Environmental Satellite Space Environment Monitor-2: Instrument Descriptions and Archive Data Documentation: NOAA Technical Memorandum OAR SEC-93[R]. Boulder, Colorado: NOAA, 2000
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1261) PDF Downloads(818) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return