Volume 37 Issue 3
May  2017
Turn off MathJax
Article Contents
NING Xiaolin, LI Zhuo, HUANG Panpan, YANG Yuqing. Comparison of Adaptive Filter for Celestial Navigation during Approach Phase[J]. Chinese Journal of Space Science, 2017, 37(3): 322-331. doi: 10.11728/cjss2017.03.322
Citation: NING Xiaolin, LI Zhuo, HUANG Panpan, YANG Yuqing. Comparison of Adaptive Filter for Celestial Navigation during Approach Phase[J]. Chinese Journal of Space Science, 2017, 37(3): 322-331. doi: 10.11728/cjss2017.03.322

Comparison of Adaptive Filter for Celestial Navigation during Approach Phase

doi: 10.11728/cjss2017.03.322
  • Received Date: 2016-04-23
  • Rev Recd Date: 2016-11-11
  • Publish Date: 2017-05-15
  • Celestial navigation is an autonomous navigation method for deep space mission, which has been wildly researched. In celestial navigation, nonlinear Kalman filters such as Unscented Kalman Filter (UKF) are usually used. However, for traditional nonlinear Kalman filter, the system model errors should be Gaussian noise and their statistical characteristics should be known. However, the information is usually unknown and the system model errors are usually time-varying in real system. Hence, many adaptive filters have been studied to solve this problem. In this paper, three adaptive filters based on adjusting the predicted state covariance matrix are compared by simulation. Before this, the system model errors of celestial navigation are also analyzed for the approach phase.

     

  • loading
  • [1]
    BHASKARAN S, DESAI S D, DUMONT P J, et al. Orbit determination performance evaluation of the Deep Space 1 autonomous navigation system[C]//Spaceflight Mecha-nics. Monterey, California, 1998:1295-1314
    [2]
    BHASKARAN S. Optical Navigation for Stardust Wild 2 Encounter[C]//AAS/AIAA Spaceflight Mechanics Conference. Maui, Hawaii: AIAA, 1998
    [3]
    FRAUENHOLZ R B, BHAT R S, MASTRODEMOS N, et al. Deep impact navigation system performance[J]. J. Spacecraft Rockets, 2008, 45(1):39-56
    [4]
    NING Xiaolin, HUANG Panpan, FANG Jiancheng. A new celestial navigation method for spacecraft on a gravity assist trajectory[J]. Math. Prob. Eng., 2013, 2013(1):950675
    [5]
    LJUNG L. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems[J]. IEEE Trans. Autom. Cont., 1979, 24(1):36-50
    [6]
    JULIER S J, UHLMANN J K. New extension of the Kalman filter to nonlinear systems[C]//Proceeding of SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI. Orlando: International Society for Optics and Photonics, 1997:182-193
    [7]
    NING X, FANG J. Spacecraft autonomous navigation using unscented particle filter-based celestial/Doppler information fusion[J]. Meas. Sci. Technol., 2008, 19(9): 095203
    [8]
    MA P, JIANG F, BAOYIN H. Autonomous navigation of Mars Probes by combining optical data of viewing Martian Moons and SST data[J]. J. Navig., 2015, 68(6):1019-1040
    [9]
    HANLON P D, MAYBECK P S. Multiple-model adaptive estimation using a residual correlation Kalman filter bank[J]. IEEE Trans. Aerospace Electron. Syst., 2000, 36(2):393-406
    [10]
    GENG Y, WANG J. Adaptive estimation of multiple fa-ding factors in Kalman filter for navigation applica-tions[J]. GPS Solut., 2008, 12(4):273-279
    [11]
    CAI X, QIU A, QIAN W X, et al. Research on MEMS gyro random drift restraining based on simplified Sage-Husa adaptive filter algorithms[J]. Adv. Mater. Res., 2011, 403-408:127-131
    [12]
    LU P, ZHAO L, CHEN Z. Improved Sage-Husa adaptive filtering and its application[J]. J. Syst. Simul., 2007, 15:3503-3505
    [13]
    XU J S, QIN Y Y, PENG R. New method for selecting adaptive Kalman filter fading factor[J]. Syst. Eng. Electron., 2004, 11:006
    [14]
    YANG Y, GAO W. Comparison of adaptive factors in Kalman filters on navigation results[J]. J. Navig., 2005, 58(3):471-478
    [15]
    DING W, WANG J, KINLYSIDE C R D. Improving adaptive Kalman estimation in GPS/INS integration[J]. J. Navig., 2007, 60(3):517-529
    [16]
    HU C, CHEN Y, CHEN W, et al. Adaptive Kalman filtering for DGPS positioning[C]//International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, 2001
    [17]
    KOCH K R, KUSCHE J. Regularization of geopotential determination from satellite data by variance components[J]. J. Geod., 2002, 76(5):259-268
    [18]
    JACOBSON R A. The orbits and masses of the Martian satellites and the libration of Phobos[J]. Astron. J., 2010, 139(2):668
    [19]
    KAASALAINEN M, TANGA P. Photocentre offset in ultraprecise astrometry: implications for barycentre determination and asteroid modeling[J]. Astron. Astrophys., 2004, 416(1):367-373
    [20]
    SIMON D. Optimal State Estimation: Kalman, H Infi-nity, and Nonlinear Approaches[M]. John Wiley & Sons, 2006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1094) PDF Downloads(1105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return