Volume 37 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
LIU Mingwei, ZHANG Yutao, LI Yanhua. Cut-off of Alfvén Waves in Weakly Ionized Near-Earth Atmosphere[J]. Chinese Journal of Space Science, 2017, 37(4): 442-447. doi: 10.11728/cjss2017.04.442
Citation: LIU Mingwei, ZHANG Yutao, LI Yanhua. Cut-off of Alfvén Waves in Weakly Ionized Near-Earth Atmosphere[J]. Chinese Journal of Space Science, 2017, 37(4): 442-447. doi: 10.11728/cjss2017.04.442

Cut-off of Alfvén Waves in Weakly Ionized Near-Earth Atmosphere

doi: 10.11728/cjss2017.04.442
  • Received Date: 2016-06-29
  • Rev Recd Date: 2017-02-27
  • Publish Date: 2017-07-15
  • Propagation of magnetic perturbation in the near-Earth atmosphere is associated with many applications, such as analysis of earthquake signals received by satellites and magnetic anomaly detection. These propagation properties are thought to be similar with those of electromagnetic waves in free space. However, some literatures show that magnetic perturbation signals also can penetrate into near-earth atmosphere by means of Alfvén waves, considering the effect of geomagnetic field. In this paper, the propagation properties of magnetic perturbation signal in the near-earth atmosphere, by using a total-current and two-fluid model, are studied. The results show that the propagation models of magnetic perturbation signal depend on the neutral-ion collision frequency, the perturbation frequency, the coefficient of magnetic diffusion and the ionization fraction. Alfvén Waves cannot exist in the near-earth atmosphere because of neutral-ion collisions. When the frequency of magnetic perturbation is smaller than 0.001Hz, the magnetic perturbation signals decay according to the skin effect, which increases as the height to the ground decreases. When the frequency of magnetic perturbation is larger than 0.001Hz, the propagation of magnetic perturbation signal in the near-earth atmosphere is similar to that of electromagnetic wave in vacuum.

     

  • loading
  • [1]
    MOLCHANOV O A, HAYAKAWA M, RAFALSKY V A. Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere[J]. J. Geophys. Res., 1995, 100(A2):1691-1712
    [2]
    HUGHES W J. The effect of the atmosphere and ionosphere on long period magnetospheric micropulsations[J]. Planet. Space Sci., 1974, 22(8):1157-1172
    [3]
    SCIFFER M D, WATERS C L. Propagation of ULF waves through the ionosphere:Analytic solutions for oblique magnetic fields[J]. J. Geophys. Res., 2002, 107(A10):SIA 11-1-SIA 11-14
    [4]
    SCIFFER M D, WATERS C L, MENK F W. A numerical model to investigate the polarization azimuth of ULF waves through an ionosphere with oblique magnetic fie-lds[J]. Ann. Geophys., 2005, 23(11):3457-3471
    [5]
    SHI Run, ZHAO Zhengyu, ZHANG Beichen. Study of the influence of IAR on geomagnetic signal at ground[J]. Chin. J. Geophys., 2010, 53(9):2013-2022(石润, 赵正予, 张北辰. 电离层Alfven谐振器对地面观测到的地磁信号的影响初步研究[J]. 地球物理学报, 2010, 53(9):2013-2022)
    [6]
    WAIT J R, CAMPBELL L L. The fields of an oscillating magnetic dipole immersed in a semi-infinite conducting medium[J]. J. Geophys. Res., 1953, 58(2):167-178
    [7]
    MOORE R K, BLAIR W E. Dipole radiation in a conducting half space[J]. J. Res. Natl. Bureau Stand. D Radio Propag., 1961, 65(6):547-563
    [8]
    FRASER-SMITH A C, BUBENIK D M. ULF/ELF magnetic fields generated at the sea surface by submerged magnetic dipoles[J]. Radio Sci., 1976, 11(11):901-913
    [9]
    ALFVÉN H. Existence of electromagnetic-hydrodynamic waves[J]. Nature, 1942, 150(3805):405-406
    [10]
    SOLER R, CARBONELL M, BALLESTER J L, et al. Alfvén waves in a partially ionized two-fluid plasma[J]. Astrophys. J., 2013, 767(2):171
    [11]
    LIU Yuantao, ZHAO Hua, LI Lei, et al. Attenuation of Alfvén waves in weakly ionized near earth atmosphere[J]. Chin. J. Space Sci., 2011, 31(3):299-303(刘元涛, 赵华, 李磊, 等. Alfvén波在微电离大气中的衰减特性研究[J]. 空间科学学报, 2011, 31(3):299-303)
    [12]
    SOLER R, BALLESTER J L, ZAQARASHVILI T V. Overdamped Alfvén waves due to ion-neutral collisions in the solar chromosphere[J]. Astron. Astrophys., 2015, 573:A79
    [13]
    DENISENKO V V, AMPFERER M, POMOZOV E V, et al. On electric field penetration from ground into the ionosphere[J]. J. Atmos. Solar-Terrestrial Phys., 2013, 102:341-353
    [14]
    LU Quankang. On a generalized Ohm's law in partially ionized plasma[J]. Acta Phys. Sinica, 1977, 26(5):417-426(陆全康. 关于部分电离等离子体的广义欧姆定律[J]. 物理学报, 1977, 26(5):417-426)
    [15]
    ZAQARASHVILI T V, KHODACHENKO M L, RUCKER H O. Magnetohydrodynamic waves in solar partially ionized plasmas:two-fluid approach[J]. Astron. Astrophys., 2011, 529:A82
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1390) PDF Downloads(652) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return