Volume 37 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
ZHENG Xiangdong, TIAN Hongmin, LIU Mengqi. Residual Ozone and Ozonesonde Correction Factor over Different Sites of Chinaormalsize[J]. Chinese Journal of Space Science, 2017, 37(5): 564-573. doi: 10.11728/cjss2017.05.564
Citation: ZHENG Xiangdong, TIAN Hongmin, LIU Mengqi. Residual Ozone and Ozonesonde Correction Factor over Different Sites of Chinaormalsize[J]. Chinese Journal of Space Science, 2017, 37(5): 564-573. doi: 10.11728/cjss2017.05.564

Residual Ozone and Ozonesonde Correction Factor over Different Sites of Chinaormalsize

doi: 10.11728/cjss2017.05.564
  • Received Date: 2016-09-21
  • Rev Recd Date: 2017-05-24
  • Publish Date: 2017-09-15
  • Residual ozone Ωres is the integrated column ozone from the balloon bursting altitude, which is generally from 30~5hPa, to the top of atmosphere. The ozonesonde correction factor Cref is the ratio of total column ozone Ω, which is precisely observed by ground or spacebased spectrophotometer, to the summery of Ωecc and Ωres. Ωecc is the integrated ozonesonde data from ground to the balloon bursting altitude. Cref is applied to assess and correct the stratospheric ozonesonde data with the well qualified Ω. Based on the sporadic Electrochemical Concentration Cell (ECC) ozonesonde data observed at different sites of China, Ωres deduced by the Constant Mixing Ratio (CMR) and satellite zonal mean (including SBUV and MLS tables) are presented, and the impact of Ωres on Cref is investigated. The contributions of ozone vertical distribution to Cref are also analyzed, and appropriate method to quantify Ωres is proposed through the Cref comparisons. Ωres deduced by CMR method is sensitive to the balloon-bursting altitude, and is frequently overestimated. As a result, Cref is generally less than 100%. Ωres deduced by the satellite zonal mean method is not sensitive to the balloon-bursting altitude. However, Cref is lower than about -10DU in two regions. One region is in east of China, such as Longfengshan in Heilongjiang province and Beijing, which is high total column ozone; the other region is Tibetan plateau and other low latitude districts including Hong Kong, which is low column ozone. The satellite zonally underestimated Ωres reflects the longitude dependence of real atmospheric ozone over China. The tropospheric column ozone Ωtro from the surface to 100hPa, stratospheric column ozone Ωstr from 100 to 10hpa and Ωres to Cref account 16%±3.4%, 65%±2.3%, 19%±3.3%, respectively. Therefore, it is necessary to consider the effects from Ωtro and Ωres on the evaluation or correction stratospheric ozone measured by ozonesonde if Cref is used. The satellite zonal mean method is generally recommended, especially the Ωres obtained when it is very close to the quasi real-time SBUV data. However, as the balloon bursting altitude above 10hPa, the conventional CMR method is also recommended for the two regions including north of east and north in China (winter and summer)-the high total ozone region, and Hong Kong (summer, autumn and winter), Tibetan plateau (summer) -the low total ozone region. It can weaken a system underestimation of Cref if the satellite deduced Ωres is used.

     

  • loading
  • [1]
    BARNES R A, BANDY A R, TORRES A L. Electrochemical concentration cell ozonesonde accuracy and precision[J]. J. Geophys. Res., 1985, 90 (D5):7881-7887
    [2]
    JOHNSON B J, OLTMANS S J, VÖMEL H, et al. Electrochemical Concentration Cell (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC sensor cathode solutions[J]. J. Geophys. Res., 2002, 107 (D19):ACH 8-1-ACH 8-18. DOI: 10.1029/2001JD000557
    [3]
    HARRIS N, HUDSON R, PHILLIPS C. Assessment of Trends in the Vertical Distribution of Ozone, SPARC Report No.1, WMO Ozone Research and Monitoring Project Report No.43[R]. Geneva:SPARC, 1998
    [4]
    Science Pump Corporation. Operator's Manual Model 6A ECC OzoneSonde[R]. Camden, USA, 1996
    [5]
    TIAO G C, REINSE G C, PEDRICK J H, et al. A statistical trend analysis of ozonesonde data[J]. J. Geophys. Res., 1986, 91 (D12):13121-13136
    [6]
    WMO. Quality Assurance and Quality Control for Ozonesonde Measurements in GAW[R]. GAW Research and Monitoring Reports 201, Geneva:WHO, 2011
    [7]
    HILSENRATH E, ATTMANNSPACHER W, BASS A, et al. Results from the Balloon Ozone Intercomparison Campaign (BOIC)[J]. J. Geophys. Res., 1986, 91 (12):13137-13152
    [8]
    THOURET V, MARENCO A, LOGAN J A, et al. Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations[J]. J. Geophys. Res., 1998, 103 (D19):25695-25720
    [9]
    DUTSCH H U. Two Years of Regular Ozone Soundings over Boulder, Colorado[R]. NCAR Technical Note NCAR/TN-10+STR, Boulder, Colo:NCAR, 1966
    [10]
    DOBSON G M B. Atmospheric ozone and the movement of the air in the stratosphere[J]. Pure Appl. Geophys., 1973, 106 (1):1520-1530
    [11]
    STÜBI R, LEVRAT G, HOEGGER B, et al. In-flight comparison of Brewer-Mast and electrochemical concentration cell ozonesondes[J]. J. Geophys. Res., 2008, 113 (D13):D13302. DOI: 10.1029/2007JD009091
    [12]
    MCPETERS R D, LABOW G J, JOHNSON B J. A satellite-derived ozone climatology for balloonsonde estimation of total column ozone[J]. J. Geophys. Res., 1997, 102 (D7):8875-8885
    [13]
    MCPETERS R D, LABOW G J. Climatology 2011:an MLS and sonde derived ozone climatology for satellite retrieval algorithms[J]. J. Geophys. Res., 2012, 117 (D10):D10303. DOI: 10.1029/2011JD017006
    [14]
    THOMPSON A M, MILLER S K, TILMES S, et al. Southern hemisphere additional ozonesondes (SHADOZ) ozone climatology (2005-2009):Tropospheric and Tropical Tropopause Layer (TTL) profiles with comparisons to OMI-based ozone products[J]. J. Geophys. Res., 2012, 117:D23301. DOI: 10.1029/2011JD016911
    [15]
    ZHOU Xiuji, LUO Chao, LI Weiliang, et al. Variations of total ozone amount in China and the ozone low center over Tibetan Plateau[J]. Chin. Sci. Bull., 1995, 40 (15):1396-1398(周秀骥, 罗超, 李维亮, 等. 中国地区臭氧总量变化与青藏高原低值中心[J]. 科学通报, 1995, 40 (15):1396-1398)
    [16]
    LIU Qijun, ZHENG Xiangdong, LUO Chao, et al. Ozone vertical profile characteristics over Qinghai Plateau measured by electrochemical concentration cell ozonesondes[J]. Adv. Atmos. Sci., 1997, 14 (4):481-490.
    [17]
    CUI Hong, ZHAO Chunsheng, QIN Yu, et al. An estimation of ozone flux in a stratosphere-troposphere exchange event[J]. Chin. Sci. Bull., 2004, 49 (2):167-174
    [18]
    CHAN C Y, ZHENG X D, CHAN L Y, et al. Vertical profile and origin of wintertime tropospheric ozone over China during the PEACE-A period[J]. J. Geophys. Res., 2004, 109 (D23):D23S06. DOI: 10.1029/2004JD004581
    [19]
    ZHENG Yongguang, CHEN Jiong, ZHU Peijun, et al. Influence of biomass burning in South Asia on lower tropospheric ozone concentration over Kunming[J]. Acta Sci. Nat. Univ. Pek., 2007, 43 (3):330-337(郑永光, 陈炯, 朱佩君, 等. 南亚地区生物体燃烧对昆明地区对流层中下层臭氧浓度的影响[J]. 北京大学学报(自然科学版), 2007, 43 (3):330-337)
    [20]
    YAN Xiaolu, ZHENG Xiangdong, ZHOU Xiuji, et al. Validation of aura microwave limb sounder water vapor and ozone profiles over the Tibetan plateau and its adjacent region during boreal summer[J]. Sci. China Earth Sci., 2015, 58 (4):589-603
    [21]
    FIOLETOV V E, TARASICK D W, PETROPAVLOVSKIKH I. Estimating ozone variability and instrument uncertainties from SBUV(/2), ozonesonde, Umkehr, and SAGE Ⅱ measurements:short-term variations[J]. J. Geophys. Res., 2006, 111 (D2):D02305
    [22]
    TRIPATHI O P, JENNINGS S G, O'DOWD C D, et al Measurements of stratospheric ozone at a mid-latitude observing station Valentia, Ireland (51.94°N, 10.25°W) using ground-based and ozonesonde observations from 1994 to 2009[J]. J. Atmos. Chem., 2013, 70 (4):297-316. DOI 10.1007/s10874-013-9274-5
    [23]
    ZHENG Xiangdong. Investigation on effect of cloud on the precision of total ozone from satellite measurements over China regions[J]. Chin. J. Atmos. Sci., 2008, 32 (6):1431-1444(郑向东. 云对中国区域卫星观测臭氧总量精度影响的检验分析[J]. 大气科学, 2008, 32 (6):1431-1444)
    [24]
    LABOW G J, MCPETERS R D, BHARTIA P K, et al. A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network[J]. J. Geophys. Res., 2013, 118 (13):7370-7378
    [25]
    HENDRICK F, POMMEREAU J P, GOUTAIL F, et al. NDACC/SAOZ UV-visible total ozone measurements:improved retrieval and comparison with correlative ground-based and satellite observations[J]. Atmos. Chem. Phys., 2011, 11 (12):5975-5995
    [26]
    JEANNET P, STÜBI R, LEVRAT G, et al. Ozone balloon soundings at Payerne (Switzerland):reevaluation of the time series 1967-2002 and trend analysis[J]. J. Geophys. Res., 2007, 112 (D11):D11302. DOI: 10.1029/2005JD006862
    [27]
    MORRIS G A, LABOW G, AKIMOTO H, et al. On the use of the correction factor with Japanese ozonesonde data[J]. Atoms. Chem. Phys., 2013, 13 (3):1243-1260
    [28]
    SAKAZAKI T, FUJIWARA M, SHIOTANI M, et al. Diurnal Ozone Variations in the Stratosphere as Revealed with SMILES Observations, Quadrennial Ozone Symposium[R]. Troonto, Canada, 2012
    [29]
    PARRISH A, BOYD I, NEDOLUHA G, et al. Diurnal Variations of Stratospheric Ozone Measured by Ground-Based Microwave Remote Sensing at the Mauna Loa NDACC Site:Measurement Validation and Results, Quadrennial Ozone Symposium[R]. Troonto, Canada, 2012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1040) PDF Downloads(727) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return