Volume 38 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
WANG Zelong, YANG Guotao, WANG Jihong, JIAO Jing, DU Lifang, XUN Yuchang. Lidar Observations and Studies of the Lower-triangle Potassium Layer over Beijing ormalsize[J]. Chinese Journal of Space Science, 2018, 38(1): 65-72. doi: 10.11728/cjss2018.01.065
Citation: WANG Zelong, YANG Guotao, WANG Jihong, JIAO Jing, DU Lifang, XUN Yuchang. Lidar Observations and Studies of the Lower-triangle Potassium Layer over Beijing ormalsize[J]. Chinese Journal of Space Science, 2018, 38(1): 65-72. doi: 10.11728/cjss2018.01.065

Lidar Observations and Studies of the Lower-triangle Potassium Layer over Beijing ormalsize

doi: 10.11728/cjss2018.01.065
  • Received Date: 2017-04-06
  • Rev Recd Date: 2017-09-12
  • Publish Date: 2018-01-15
  • A special behavior of the potassium layer in the mesopause region has been discovered over Beijing, China (40.4°N, 116.0°E) from two-year long data sets, during November 2010 to October 2011 and May 2013 to April 2014. This peculiar potassium layer is termed as the lower-triangle potassium layer. The peak density of the lower-triangle potassium layer increases gradually and the height of the peak density evidently descends with time. The concentration of the potassium atoms first increases rapidly and then decreases slowly along with the increasing height. When the lower-triangle potassium layer appeared, the column density below 90km increased significantly, but the column density above 90km changed little. Then the whole column density increased obviously. There are the longest occurrence time and the highest occurrence ratio of the lower triangle potassium layer in January, which could be related to seasonal variations of the atmospheric semidiurnal tides. The frequent appearance of the lower-triangle potassium layer has made the average column density and peak density increase by 15.7% and 12.9% respectively, but the centroid height decrease by 0.18km in January. The comparisons between the lower-triangle potassium layer and the sodium layer at the same time and location show that the concentration of sodium atoms had no obvious change when the concentration of potassium atoms increased remarkably. Assuming that there were no special sources injecting into the metal layers, according to the chemical reactions and relevant chemical reaction rates in potassium model and sodium model, it can be speculated that the increasing potassium atoms in the lower-triangle potassium layer were mainly converted from KO2, and partly from KOH.

     

  • loading
  • [1]
    GARDNER C S. Performance capabilities of middle-atmosphere temperature lidars: comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems[J]. Appl. Opt., 2004, 43(25):4941-4956
    [2]
    PLANE J M C. The chemistry of meteoric metals in the Earth's upper atmosphere[J]. Int. Rev. Phys. Chem., 1991, 10(1):55-106
    [3]
    GARDNER C S, VOELZ D G, SECHRIST C F Jr, et al. Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations[J]. J. Geophys. Res., 1986, 91(A12):13659-13673
    [4]
    ESKA V, VON ZAHN U, PLANE J M C. The terrestrial potassium layer (75~110km) between 71°S and 54°N: observations and modeling[J]. J. Geophys. Res., 1999, 104(A8):17173-17186
    [5]
    GARDNER C S, CHU Xianzhao, ESPY P J, et al. Seasonal variations of the mesospheric Fe layer at Rothera, Antarctica (67.5°S, 68.0°W)[J]. J. Geophys. Res., 2011, 116(D2):D02304
    [6]
    GERDING M, ALPERS M, VON ZAHN U, et al. Atmospheric Ca and Ca+ layers: Midlatitude observations and modeling[J]. J. Geophys. Res., 2000, 105(A12):27131-27146
    [7]
    SULLIVAN H M, HUNTEN D M. Lithium, sodium, and potassium in the twilight airglow[J]. Can. J. Phys., 1964, 42(5):937-956
    [8]
    FELIX F, KEENLISIDE W, KENT G, et al. Laser radar observations of atmospheric potassium[J]. Nature, 1973, 246(5432):345-346
    [9]
    MEGIE G, BOS F, BLAMONT J E, et al. Simultaneous nighttime lidar measurements of atmospheric sodium and potassium[J]. Planet. Space Sci., 1978, 26(1):27-35
    [10]
    VON ZAHN U, HÖFFNER J. Mesopause temperature profiling by potassium lidar[J]. Geophys. Res. Lett., 1996, 23(2):141-144
    [11]
    ESKA V, HÖFFNER J, VON ZAHN U. Upper atmosphere potassium layer and its seasonal variations at 54°N[J]. J. Geophys. Res., 1998, 103(A12):29207-29214
    [12]
    FRIEDMAN J S, COLLINS S C, DELGADO R, et al. Mesospheric potassium layer over the Arecibo Observatory, 18.3°N, 66.75°W[J]. Geophys. Res. Lett., 2002, 29(5):1071
    [13]
    WANG Zelong, YANG Guotao, WANG Jihong, et al. Seasonal variations of meteoric potassium layer over Beijing (40.41°N, 116.01°E)[J]. J. Geophys. Res., 2017, 122(2):2106-2118
    [14]
    FRIEDMAN J S, CHU Xinzhao, BRUM C G M, et al. Observation of a thermospheric descending layer of neutral K over Arecibo[J]. J. Atmos. Solar-Terr. Phys., 2013, 104:253-259
    [15]
    JIAO Jing, YANG Guotao, WANG Jihong, et al. Occurrence and characteristics of sporadic K layer observed by lidar over Beijing, China[J]. Sci. China Earth Sci., 2016, 59(3):540-547
    [16]
    JIAO Jing, YANG Guotao, WANG Jihong, et al. First report of sporadic K layers and comparison with sporadic Na layers at Beijing, China (40.6°N, 116.2°E)[J]. J. Geophys. Res., 2015, 120(6):5214-5225
    [17]
    CLEMESHA B R, BATISTA P P, SIMONICH D M. Tide-induced oscillations in the atmospheric sodium layer[J]. J. Atmos. Solar-Terr. Phys., 2002, 64(12/13/14):1321-1325
    [18]
    YUE Jia, XU Jiyao, CHANG L C, et al. Global structure and seasonal variability of the migrating terdiurnal tide in the mesosphere and lower thermosphere[J]. J. Atmos. Solar-Terr. Phys., 2013, 105-106:191-198
    [19]
    GONG Shaohua, YANG Guotao, DOU Xiankang, et al. Statistical study of atmospheric gravity waves in the mesopause region observed by a lidar chain in eastern China[J]. J. Geophys. Res., 2015, 120(15):7619-7634
    [20]
    PLANE J M C, FENG W, DAWKINS E, et al. Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere[J]. Geophys. Res. Lett., 2014, 41(13):4753-4760
    [21]
    PLANE J M C. A time-resolved model of the mesospheric Na layer: constraints on the meteor input function[J]. Atmos. Chem.-Phys., 2004, 4(3):627-638
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(944) PDF Downloads(729) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return