Volume 38 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
MIAO Juan, REN Tingling, GONG Jiancun, LIU Siqing, LI Zhitao. Analysis and Verification of Thermospheric Density Derived from CHAMP and GRACE-A/B Accelerometer Data ormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 201-210. doi: 10.11728/cjss2018.02.201
Citation: MIAO Juan, REN Tingling, GONG Jiancun, LIU Siqing, LI Zhitao. Analysis and Verification of Thermospheric Density Derived from CHAMP and GRACE-A/B Accelerometer Data ormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 201-210. doi: 10.11728/cjss2018.02.201

Analysis and Verification of Thermospheric Density Derived from CHAMP and GRACE-A/B Accelerometer Data ormalsize

doi: 10.11728/cjss2018.02.201
  • Received Date: 2017-07-07
  • Rev Recd Date: 2017-11-26
  • Publish Date: 2018-03-15
  • The data of thermospheric total mass density derived from the high-accuracy accelero-meter on board the CHAMP and GRACE-A/B satellites during 2001-2008 at 400km altitude are analyzed. NRLMSISE-00 is selected as the reference model for comparing with those derived density. Mean Absolute Error (MAE) and Mean Relative Error (MRE) between derived and NLRMSISE-00 model values are given. The characteristics and causes of these errors are analyzed. The density variation and their rationality are also discussed. Moreover, the reliability of the derived density is verified by TLEs density. The main conclusions are as follows. Density obtained by CHAMP is larger than those obtained by GRACE-A/B at 400km altitude. The errors between the density obtained by CHAMP and model value are smaller than those between GRACE-A/B and model. There is a global deviation between the density obtained by CHAMP and model. The density variation in the similar space environment and the density obtained by TLEs show that the density in 2001 obtained by CHAMP is lower than actual values. Examples of the density obtained by CHAMP and GRACE-A/B indicate that there are some individual characteristics of the density obtained by the satellites, and they should be analyzed and chosen in application.

     

  • loading
  • [1]
    JACCHIA L G. New Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles[R]. SAO Technical Report No. 313. Cambridge:Smithsonian Astrophysical Observatory, 1970
    [2]
    BERGER C, BIANCALE R, ILL M, et al. Improvement of the empirical thermospheric model DTM:DTM94——a comparative review of various temporal variations and prospects in space geodesy applications[J]. J. Geod., 1998, 72(3):161-178
    [3]
    BRUINSMA S, THUILLIER G, BARLIER F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary:accuracy and properties[J]. J. Atmos. Solar-Terr. Phys., 2003, 65(9):1053-1070
    [4]
    HEDIN A E. MSIS-86 thermospheric model[J]. J. Geophys. Res., 1987, 92(A5):4649-4662
    [5]
    HEDIN A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere[J]. J. Geophys. Res., 1991, 96(A2):1159-1172
    [6]
    PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107(A12):SIA 15-1-SIA 15-16. DOI: 10.1029/2002JA009430
    [7]
    KALLMANN-BIJL H, BOYD R L F, LAGOW H, et al. CIRA 1961:Cospar International Reference Atmosphere 1961[R]. Amsterdam:North-Holland Publishing Company, 1961
    [8]
    BOWMAN B R, TOBISKA W K, MARCOS F A. A new empirical thermospheric density model JB2006 using new solar indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone, Colorado:AIAA, 2006
    [9]
    BOWMAN B R, TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu, Hawaii:AIAA, 2008
    [10]
    LEI Jiuhou, MATSUO T, DOU Xiankang, et al. Annual and semiannual variations of thermospheric density:EOF analysis of CHAMP and GRACE data[J]. J. Geophys. Res., 2012, 117(A1):A01310. DOI: 10.1029/2011Ja017324
    [11]
    STORZ M F, BOWMAN B R, BRANSON M J I, et al. High Accuracy Satellite Drag Model (HASDM)[J]. Adv. Space Res., 2005, 36(12):2497-2505
    [12]
    BRUINSMA S, FORBES J M, NEREM R S, et al. Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data[J]. J. Geophys. Res., 2006, 111(A6):A06303
    [13]
    SUTTON E K, FORBES J M, NEREM R S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data[J]. J Geophys. Res., 2005, 110(A9):A09S40
    [14]
    LIU H, LÜHR H, HENIZE V, et al. Global distribution of the thermospheric total mass density derived from CHAMP[J]. J. Geophys. Res., 2005, 110(A4):A04301
    [15]
    LIU H, LÜHR H. Strong disturbance of the upper thermospheric density due to magnetic storms:CHAMP observations[J]. J. Geophys. Res., 2005, 110(A9):A09S29
    [16]
    LIU Jing, LIU Libo, ZHAO Biqiang, et al. Superposed epoch analyses of thermospheric response to CIRs:solar cycle and seasonal dependencies[J]. J. Geophys. Res., 2012, 117(A9):A00L10
    [17]
    MÜLLER S, LÜHR H, RENTZ S. Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP[J]. Ann. Geophys., 2009, 27(5):2087-2099
    [18]
    ZHOU Yunliang, MA Shuying, LÜHR H, et al. Changes of thermospheric mass density and their relations with Joule heating and ring current index during Nov. 2003 superstorm CHAMP observations[J]. Chin. J. Geophys., 2007, 50(4):986-994(周云良, 马淑英, LÜHR H, 等. 2003年11月超强磁暴热层大气密度扰动及其与焦耳加热和环电流指数的关系elax——CHAMP卫星观测[J]. 地球物理学报, 2007, 50(4):986-994)
    [19]
    CHEN Guangming, XU Jiyao, WANG Wenbin, et al. A comparison of the effects of CIR-and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits:case studies[J]. J. Geophys. Res., 2012, 117(A8):A08315
    [20]
    WANG Hui, MAO Dandan, MA Shuying, et al. Substorm time ionospheric field-aligned currents as observed by CHAMP[J]. Chin. J. Geophys., 2010, 53(6):1256-1262(王慧, 毛丹丹, 马淑英, 等. 亚暴期间电离层场向电流的分布特征elax——CHAMP卫星观测[J]. 地球物理学报, 2010, 53(6):1256-1262)
    [21]
    LEI Jiuhou, THAYER J P, BURNS A G, et al. Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm[J]. J. Geophys. Res., 2010, 115(A5):A05303
    [22]
    WANG Hongbo, ZHAO Changyin. Use CHAMP/STAR accelerometer data to evaluate atmospheric density models during solar maximum year[J]. Acta Astron. Sin., 2008, 49(2):168-178(汪宏波, 赵长印. 用CHAMP加速仪数据校验太阳活动峰年的大气模型精度[J]. 天文学报, 2008, 49(2):168-178)
    [23]
    WENG Libin, FANG Hanxian, JI Chunhua, et al. Comparison between the CHAMP/STAR derived thermospheric density and the NRLMSISE-00 model[J]. Chin. J. Space Sci., 2012, 32(5):713-719(翁利斌, 方涵先, 季春华, 等. 基于卫星加速度数据反演的热层大气密度与NRLMSISE-00模式结果的比较研究[J]. 空间科学学报, 2012, 32(5):713-719)
    [24]
    DOORNBOS E, KLINKRAD H, VISSER P. Use of two-line element data for thermosphere neutral density model calibration[J]. Adv. Space Res., 2008, 41(7):1115-1122
    [25]
    LEAN J L, PICONE J M, EMMERT J T, et al. Thermospheric densities derived from spacecraft orbits:application to the starshine satellites[J]. J. Geophys. Res., 2006, 111(A4):A04301. DOI: 10.1029/2005JA011399
    [26]
    EMMERT J T, PICONE J M, MEIER R R. Thermospheric global average density trends, 1967-2007, derived from orbits of 5000 near-Earth objects[J]. Geophys. Res. Lett., 2008, 35(5):L05101. DOI: 10.1029/2007GL032809
    [27]
    PICONE J M, EMMERT J T, LEAN J L. Thermospheric densities derived from spacecraft orbits:accurate processing of two-line element sets[J]. J. Geophys. Res., 2005, 110(A3):A03301. DOI: 10.1029/2004JA010585
    [28]
    REN Tingling, MIAO Juan, LIU Siqing, et al. Research on thermospheric densities derived from two-line element sets[J]. Chin. J. Space Sci., 2014, 34(4):426-433(任廷领, 苗娟, 刘四清, 等. 利用卫星两行轨道根数反演热层密度[J]. 空间科学学报, 2014, 34(4):426-433)
    [29]
    QI Yalong, LI Huijun, XIANG Jie, et al. Ballistic coefficient estimation of satellite in low earth orbit and atmosphere model error analysis[J]. Chin. J. Space Sci., 2014, 34(1):89-94(漆亚龙, 李汇军, 项杰, 等. 低轨航天器弹道系数估算及热层大气模型误差分析[J]. 空间科学学报, 2014, 34(1):89-94)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1078) PDF Downloads(790) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return