Volume 38 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
SUN Rui, YAO Zhigang, HAN Zhigang, ZHAO Zengliang, CUI Xindong, YAN Wei. Numerical Simulation of Stratospheric Gravity Waves Induced by a Rainstorm[J]. Chinese Journal of Space Science, 2018, 38(4): 469-481. doi: 10.11728/cjss2018.04.469
Citation: SUN Rui, YAO Zhigang, HAN Zhigang, ZHAO Zengliang, CUI Xindong, YAN Wei. Numerical Simulation of Stratospheric Gravity Waves Induced by a Rainstorm[J]. Chinese Journal of Space Science, 2018, 38(4): 469-481. doi: 10.11728/cjss2018.04.469

Numerical Simulation of Stratospheric Gravity Waves Induced by a Rainstorm

doi: 10.11728/cjss2018.04.469
  • Received Date: 2017-09-04
  • Rev Recd Date: 2018-03-05
  • Publish Date: 2018-07-15
  • In order to analyze the characteristics of the deep convection-induced stratospheric gravity waves in Chinese continental region, a stratospheric gravity wave process, which is observed by the satellite Aqua/AIRS and accompanied with the heavy rainstorm process on July 25th, 2011 in Rushan, is simulated using the mesoscale numerical WRF (Weather Research and Forcasting) model. The analysis of the vertical velocity field and the temperature disturbance field of the mode output show that the structure of the torrential wave in the stratosphere is mainly concentrated in the east of the precipitation cloud system, and the horizontal influence range is more than 1000km. With the increase of the height, the structure of the torrential wave tends to close, and the wave energy is also significantly enhanced. The results of power spectrum analysis based on Fast Fourier Transform (FFT) show that the stratospheric gravity wave induced by the storm at 35km has the horizontal wavelength of about 1000km and the vertical wavelength of 5~10km. Finally, the parameterized forcing in gravity wave uploading process is quantifiably reflected by analyzing the vertical transport of momentum flux reflects.

     

  • loading
  • [1]
    FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1):1003
    [2]
    ALEXANDER M J, PFISTER L. Gravity wave momentum flux in the lower stratosphere over convection[J]. Geophys. Res. Lett., 1995, 22(15):2029-2032
    [3]
    LANE T P, SHARMAN R D, CLARK T L, et al. An investigation of turbulence generation mechanisms above deep convection[J]. J. Atmos. Sci., 2003, 60(10):1297-1321
    [4]
    HUNG R J, TSAO Y D, LIU J N, et al. Lower thermospheric density fluctuations during the time period of Typhoon Dinah[C]//Proceedings of the 27th Aerospace Sciences Meeting. Reno, NV:AIAA, 1989
    [5]
    TU Jiannan. The coupling between atmospheric waves and electron density perturbations[J]. Chin. J. Space Sci., 1993, 13(3):190-195(涂剑南. 大气重力波与电子密度扰动的耦合[J]. 空间科学学报, 1993, 13(3):190-195)
    [6]
    MENDILLO M, RISHBETH H, ROBLE R G, et al. Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere[J]. J. Atmos. Solar Terr. Phys., 2002, 64(18):1911-1931
    [7]
    BERES J H, GARCIA R R, BOVILLE B A, et al. Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM)[J]. J. Geophys. Res., 2005, 110(D10):D10108
    [8]
    KIM S Y, CHUN H Y, WU D L. A study on stratospheric gravity waves generated by Typhoon Ewiniar:numerical simulations and satellite observations[J]. J. Geophys. Res., 2009, 114(D22):D22104
    [9]
    EVAN S, ALEXANDER J M, DUDHIA J. WRF simulations of convectively generated gravity waves in opposite QBO phases[J]. J. Geophys. Res., 2012, 117(D12):D12117
    [10]
    KIM S Y, CHUN H Y, BAIK J J. A numerical study of gravity waves induced by convection associated with Typhoon Rusa[J]. Geophys. Res. Lett., 2005, 32(24):L24816
    [11]
    KUESTER M A, ALEXANDER M J, RAY E A. A model study of gravity waves over hurricane Humberto (2001)[J]. J. Atmos. Sci., 2008, 65(10):3231-3246
    [12]
    GRIMSDELL A W, ALEXANDER M J. Model study of waves generated by convection with direct validation via satellite[J]. J. Atmos. Sci., 2010, 67(5):1617-1631
    [13]
    JEWTOUKOFF V, PLOUGONVEN R, HERTZOG A. Gravity waves generated by deep tropical convection:estimates from balloon observations and mesoscale simulations[J]. J. Geophys. Res., 2013, 118(17):9690-9707
    [14]
    CHEN Dan, CHEN Zeyu, LÜ Daren. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005[J]. Sci. China Earth Sci., 2012, 55(4):602-610(陈丹, 陈泽宇, 吕达仁. 台风"麦莎" (Matsa)诱发平流层重力波的数值模拟[J]. 中国科学:地球科学, 2011, 41(1):1-9)
    [15]
    HONG Jun, YAO Zhigang, HAN Zhigang, et al. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the typhoon Muifa[J]. Chin. J. Geophys., 2015, 58(7):2283-2293(洪军, 姚志刚, 韩志刚, 等. 台风"梅花"诱发平流层重力波的数值模拟与AIRS观测[J]. 地球物理学报, 2015, 58(7):2283-2293)
    [16]
    YUAN Hong, WAN Weixing, LIANG Jun. The statistical sources distribution of TIDs observed in central China[J]. Chin. J. Geophys., 1997, 40(2):164-169(袁洪, 万卫星, 梁君. 中国中部地区TID激发源的统计分布[J]. 地球物理学报, 1997, 40(2):164-169)
    [17]
    XU Guirong, WAN Weixing, NING Baiqi. Effects of extreme heavy rainfall in the troposphere on the ionosphere[J]. Chin. J. Space Sci., 2005, 25(2):104-110(徐桂荣, 万卫星, 宁百齐. 对流层特大暴雨天气对电离层变化的影响[J]. 空间科学学报, 2005, 25(2):104-110)
    [18]
    ZHENG Yongguang, CHEN Jiong, ZHU Peijun. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer[J]. Chin. Sci. Bull., 2008, 53(10):1574-1586(郑永光, 陈炯, 朱佩君. 中国及周边地区夏季中尺度对流系统分布及其日变化特征[J]. 科学通报, 2008, 53(4):471-481)
    [19]
    YAO Zhigang, ZHAO Zengliang, HAN Zhigang. Stratospheric gravity waves during summer over East Asia derived from AIRS observations[J]. Chin. J. Geophys., 2015, 58(4):1121-1134
    [20]
    HOFFMANN L, XUE X, ALEXANDER M J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations[J]. J. Geophys. Res., 2013, 118(2):416-434
    [21]
    YUE J, VADAS S L, SHE C Y, et al. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado[J]. J. Geophys. Res., 2009, 114(D6):D06104
    [22]
    MILLER S D, MILLS S P, ELVIDGE C D, et al. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities[J]. PNAS, 2012, 109(39):15706-15711
    [23]
    SMITH S M, MENDILLO M, BAUMGARDNER J, et al. Mesospheric gravity wave imaging at a subauroral site:First results from Millstone Hill[J]. J. Geophys. Res., 2000, 105(A12):27119-27130
    [24]
    AZEEM I, YUE J, HOFFMANN L, et al. Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere[J]. Geophys. Res. Lett., 2015, 42(19):7874-7880
    [25]
    XU J Y, LI Q Z, YUE J, et al. Concentric gravity waves over northern China observed by an airglow imager network and satellites[J]. J. Geophys. Res., 2015, 120:11058-11078
    [26]
    AUMANN H H, CHAHINE M T, GAUTIER C, et al. AIRS/AMSU/HSB on the Aqua mission:Design, science objectives, data products, and processing systems[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41(2):253-264
    [27]
    GONG J, WU D L, ECKERMANN S D. Gravity wave variances and propagation derived from AIRS radiances[J]. Atmos. Chem. Phys., 2012, 12(4):1701-1720
    [28]
    PLOUGONVEN R, ZHANG F Q. Internal gravity waves from atmospheric jets and fronts[J]. Rev. Geophys., 2014, 52(1):33-76
    [29]
    XU Kai, YAO Zhigang, HAN Zhigang, et al. Recent process in near-space gravity wave analysis based on satellite measurements[J]. Adv. Earth Sci., 2017, 32(1):66-74
    [30]
    HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon. Wea. Rev., 2004, 132(1):103-120
    [31]
    MLAWER E J, TAUBMAN S J, BROW P D, et al. Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 1997, 102(D14):16663-16682
    [32]
    DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 1989, 46(20):3077-3107
    [33]
    MEI Chanjuan, ZHANG Can, LI Hongjiang. Cause analysis of a torrential rainfall in Shandong Rushan on July 25, 2011[J]. Meteor. Environ. Sci., 2016, 39(3):82-89(梅婵娟, 张灿, 李宏江. 2011年"7.25"山东乳山特大暴雨成因分析[J]. 气象与环境科学, 2016, 39(3):82-89)
    [34]
    MONCRIEFF M W, MILLER M J. The dynamics and simulation of tropical cumulonimbus and squall lines[J]. Quart. J. Royal Meteor. Soc., 1976, 102(432):373-394
    [35]
    ZHANG Jianchun, WANG Haixia, TAO Zuyu. Statistical analysis of predicting skill of convective available potential energy[J]. Torr. Rain Dis., 2014, 33(3):290-296
    [36]
    FOVELL R, DURRAN D, HOLTON J R. Numerical simulations of convectively generated stratospheric gravity waves[J]. J. Atmos. Sci., 1992, 49(16):1427-1442
    [37]
    BERES J H, ALEXANDER M J, HOLTON J R. A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind[J]. J. Atmos. Sci., 2004, 61(3):324-337
    [38]
    CHUN H Y, BAIK J J. Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models[J]. J. Atmos. Sci., 1998, 55(21):3299-3310
    [39]
    SONG I S, CHUN H Y. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I:theory[J]. J. Atmos. Sci., 2005, 62(1):107-124
    [40]
    GELLER M A, ALEXANDER M J, LOVE P T, et al. A comparison between gravity wave momentum fluxes in observations and climate models[J]. J. Climate, 2013, 26(17):6383-6405
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1299) PDF Downloads(1671) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return