Volume 38 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
ZHANG Yiyao, SHENG Zheng, SHI Hanqing, JIANG Yu, YANG Pinglü, CAO Yu. Characteristics of Wind and Planetary Waves Based on FPI over Kelan of Chinaormalsize[J]. Chinese Journal of Space Science, 2018, 38(4): 482-491. doi: 10.11728/cjss2018.04.482
Citation: ZHANG Yiyao, SHENG Zheng, SHI Hanqing, JIANG Yu, YANG Pinglü, CAO Yu. Characteristics of Wind and Planetary Waves Based on FPI over Kelan of Chinaormalsize[J]. Chinese Journal of Space Science, 2018, 38(4): 482-491. doi: 10.11728/cjss2018.04.482

Characteristics of Wind and Planetary Waves Based on FPI over Kelan of Chinaormalsize

doi: 10.11728/cjss2018.04.482
  • Received Date: 2017-04-17
  • Rev Recd Date: 2017-09-21
  • Publish Date: 2018-07-15
  • The horizontal wind data observed by Fabry-Perot Interferometer (FPI) over Kelan, China, has been used to investigate the characteristics of wind and planetary waves at altitudes of 87, 97 and 250km. Firstly, the midnight winds have been compared with those from HWM07. The results are as follows. At 87 and 97km, the AO (Annual Oscillation) and SAO (Semiannual Oscillation) phases of zonal wind of FPI tend to consist with those from HWM07, while the phases of FPI meridional wind lag behind. Both the zonal and meridional FPI amplitudes are smaller. It shows large discrepancies between FPI and HWM07 winds, which reveals that the improvement of HWM07 model needs to further consider the influence of solar activity and interplanetary magnetic field. Secondly, the Lomb-Scargle analysis and the least squares harmonic fitting method have been used to derive the amplitudes of planetary waves at the three altitudes. At 87 and 97km, the 16-day waves are prominent at autumn, winter and spring during 2013-2014, while the 6.5-day waves tend to dominant spring and autumn. Both of the two planetary waves have weak amplitudes around mesopause. The amplitudes are stronger in meridional wind than zonal at 250km. Three typical planetary wave period bands of meridional wind show that the strongest amplitudes persist from May to October. This is consist with the results of ionospheric f0F2 oscillations.

     

  • loading
  • [1]
    KAWAMURA S, OTSUKA Y, ZHANG S R, et al. A climatology of middle and upper atmosphere radar observations of thermospheric winds[J]. J. Geophys. Res., 2000, 105(A6):12777-12788
    [2]
    BIONDI M A, SAZYKIN S Y, FEJER B G, et al. Equatorial and low latitude thermospheric winds:measured quiet time variations with season and solar flux from 1980 to 1990[J]. J. Geophys. Res., 1999, 104(A8):17091-17106
    [3]
    XIONG J G, WAN W, NING B, et al. First results of the tidal structure in the MLT revealed by Wuhan Meteor Radar (30°40'N, 114°30'E)[J]. J. Atmos. Sol.-Terr. Phys., 2004, 66(6-9):675-682
    [4]
    MANSON A H, MEEK C E. Characteristics of gravity waves (10min-6 hours) at Saskatoon (52°N, 107°W):observations by the phase coherent medium frequency radar[J]. J. Geophys. Res., 1993, 98(D11):20357-20367
    [5]
    SALAH J E, HOLT J M. Midlatitude thermospheric winds from incoherent scatter radar and theory[J]. Radio Sci., 1974, 9(2):301-313
    [6]
    YU Tao, HUANG Cong, ZHAO Guangxin, et al. A preliminary study of thermosphere and mesosphere wind observed by Fabry-Perot over Kelan, China[J]. J. Geophys. Res., 2014, 119(6):4981-4997
    [7]
    DROB D P, EMMERT J T, CROWLEY G, et al. An empirical model of the Earth's horizontal wind fields:HWM07[J]. J. Geophys. Res., 2008, 113(A12):A12304
    [8]
    EMMERT J T, FEJER B G, SHEPHERD G G, et al. Altitude dependence of middle and low-latitude daytime thermospheric disturbance winds measured by WINDⅡ[J]. J. Geophys. Res., 2002, 107(A12):1483
    [9]
    WON Y I, SIVJEE G G, AZEEM S M I, et al. Tidal features in the wintertime mesospheric temperature and neutral winds recorded at Resolute Bay, Canada (74.68°N, 94.90°W)[J]. J. Atmos. Sol.-Terr. Phys., 2007, 69(4-5):459-470
    [10]
    WU Q, GABLEHOUSE R D, KILLEEN T L, et al. Multi-year high latitude mesospheric neutral wind observations using a Fabry-Perot interferometer[J]. Adv. Space Res., 2005, 35(11):1895-1899
    [11]
    TANG Lei, HUANG Chunming. Mid-latitude planetary waves observation from MST radar measurements in the troposphere and lower stratosphere[J]. Chin. J. Space Sci., 2016, 36(2):175-187(汤蕾, 黄春明. 基于MST雷达数据的中纬对流层和低平流层大气行星波研究[J]. 空间科学学报, 2016, 36(2):175-187)
    [12]
    HUANG Y Y, ZHANG S D, YI F, et al. Global climatological variability of quasi-two-day waves revealed by TIMED/SABER observations[J]. Ann. Geophys., 2013, 31(6):1061-1075
    [13]
    FORBES J M, HAGAN M E, MIYAHARA S, et al. Quasi 16-day oscillation in the mesosphere and lower thermosphere[J]. J. Geophys. Res., 1995, 100(D5):9149-9163
    [14]
    DAY K A, HIBBINS R E, MITCHELL N J. Aura MLS observations of the westward-propagating s!=!1, 16-day planetary wave in the stratosphere, mesosphere and lower thermosphere[J]. Atmos. Chem. Phys., 2011, 11(9):4149-4161
    [15]
    CHARNEY J G, DRAZIN P G. Propagation of planetaryscale disturbances from the lower into the upper atmosphere[J]. J. Geophys. Res., 1961, 66(1):83-109
    [16]
    LUO Yi, MANSON A H, MEEK C E, et al. The quasi 16-day oscillations in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W), 1980-1996[J]. J. Geophys. Res., 2000, 105(D2):2125-2138
    [17]
    HOLTON J R. The generation of mesospheric planetary waves by zonally asymmetric gravity wave breaking[J]. J. Atmos. Sci., 1984, 41(23):3427-3430
    [18]
    JIANG G, XIONG J, WAN W, et al. Observation of 6.5-day waves in the MLT region over Wuhan[J]. J. Atmos. Sol.-Terr. Phys., 2008, 70(1):41-48
    [19]
    RIGGIN D M, LIU H L, LIEBERMAN R S, et al. Observations of the 5-day wave in the mesosphere and lower thermosphere[J]. J. Atmos. Sol.-Terr. Phys., 2006, 68(3-5):323-339
    [20]
    MEYER C K, FORBES J M. A 6.5-day westward propagating planetary wave:Origin and characteristics[J]. J. Geophys. Res., 1997, 1022(D22):26173-26178
    [21]
    POGORELTSEV A I, FEDULINA I N, MITCHELL N J, et al. Global free oscillations of the atmosphere and secondary planetary waves in the mesosphere and lower thermosphere region during August/September time conditions[J]. J. Geophys. Res., 2002, 107(D24):4799
    [22]
    POGORELTSEV A I, VLASOV A A, FRÖHLICH K, et al. Planetary waves in coupling the lower and upper atmosphere[J]. J. Atmos. Sol.-Terr. Phys., 2007, 69(17-18):2083-2101
    [23]
    ALTADILL D, APOSTOLOV E M. Time and scale size of planetary wave signatures in the ionospheric F region:Role of the geomagnetic activity and mesosphere/lower thermosphere winds[J]. J. Geophys. Res., 2003, 108(A11):1403
    [24]
    XIONG J, WAN W, NING B, et al. Planetary wave-type oscillations in the ionosphere and their relationship to mesospheric/lower thermospheric and geomagnetic disturbances at Wuhan (30.6°N, 114.5°E)[J]. J. Atmos. Sol.-Terr. Phys., 2006, 68(3-5):498-508
    [25]
    LIU H L, WANG W, RICHMOND A D, et al. Ionospheric variability due to planetary waves and tides for solar minimum conditions[J]. J. Geophys. Res., 2010, 115(A6):A00G01
    [26]
    YUAN Wei, XU Jiyao, MA Ruiping, et al. First observation of mesospheric and thermospheric winds by a Fabry-Perot interferometer in China[J]. Chin. Sci. Bull., 2010, 55(35):4046-4051
    [27]
    GRUBBS F E. Procedures for detecting outlying observations in samples[J]. Technometrics, 1969, 11(1):1-21
    [28]
    XU Jiyao, SMITH A K, YUAN W, et al. Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER[J]. J. Geophys. Res., 2007, 112(D24):D24106
    [29]
    ZHANG Yiyao, SHENG Zheng, SHI Hanqing, et al. Properties of the long-term oscillations in the middle atmosphere based on observations from TIMED/SABER instrument and FPI over Kelan[J]. Atmosphere, 2017, 8(1):7
    [30]
    YUAN W, LIU X, XU J, et al. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07[J]. Ann. Geophys., 2013, 31(8):1365-1378
    [31]
    CAO Jinbin. Space weather research[J]. Bull. Chin. Acad. Sci., 2005, 20(4):277-282(曹晋滨. 空间天气学研究进展[J].中国科学院院刊, 2005, 20(4):277-282)
    [32]
    PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical Recipes in FORTRAN:The Art of Scientific Computing[M]. 2nd ed. New York:Cambridge University Press, 1992:569-577
    [33]
    XIONG Jiangang, YI Fan, KLOSTERMEYER J, et al. The VHF observation and study of nonlinear interaction near mesopause[J]. Chin. J. Radio Sci., 2000, 15(1):84-89(熊建刚, 易帆, KLOSTERMEYER J, 等. 中层顶波非线性相互作用的甚高频雷达观测研究[J]. 电波科学学报, 2000, 15(1):84-89)
    [34]
    LIU Xiao, XU Jiyao, ZHANG Shunrong, et al. Thermospheric planetary wavetype oscillations observed by FPIs over Xinglong and Millstone Hill[J]. J. Geophys. Res., 2014, 119(8):6891-6901
    [35]
    PARDO-IGUZQUIZA E, RODRÍGUEZ-TOVAR F J. Implemented Lomb-Scargleperiodogram:Avaluable tool for improving cyclostratigraphic research on unevenly sampled deep-sea stratigraphic sequences[J]. Geo-Mar. Lett., 2011, 31(5-6):537-545
    [36]
    WU D L, HAYS P B, SKINNER W R. A least squares method for spectral analysis of space-time series[J]. J. Atmos. Sci., 1995, 52(20):3501-3511
    [37]
    CAO Wenxiang, ZHANG Shaodong, YI Fan, et al. Variation of the mesopause observed by SABER/TIMED satellite[J]. Chin. J. Geophys., 2015, 55(8):2489-2497
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1196) PDF Downloads(1651) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return