Volume 38 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
PAN Zhenhao, ZHOU Xiaoming, CHEN Gang, YAN Chunxiao, CHEN Feilong, WANG Ying. Abnormal Echoes in Lower Stratosphere Observed by Wuhan MST Radar during a Cold front Event[J]. Chinese Journal of Space Science, 2018, 38(4): 492-501. doi: 10.11728/cjss2018.04.492
Citation: PAN Zhenhao, ZHOU Xiaoming, CHEN Gang, YAN Chunxiao, CHEN Feilong, WANG Ying. Abnormal Echoes in Lower Stratosphere Observed by Wuhan MST Radar during a Cold front Event[J]. Chinese Journal of Space Science, 2018, 38(4): 492-501. doi: 10.11728/cjss2018.04.492

Abnormal Echoes in Lower Stratosphere Observed by Wuhan MST Radar during a Cold front Event

doi: 10.11728/cjss2018.04.492
  • Received Date: 2017-06-28
  • Rev Recd Date: 2017-11-29
  • Publish Date: 2018-07-15
  • Wuhan Mesosphere-Stratosphere-Troposphere (MST) radar is a radio atmosphere detection radar deployed by the Chinese Meridian Project. As the frequency is in VHF band, the echoes are sensitive in all their aspects. Such echo characteristics are much more obvious in the Upper Troposphere and Lower Stratosphere (UTLS), which provides a practical approach to investigate the atmosphere dynamics. Observations of echo characteristic during a cold front are obtained by Wuhan MST radar in mid-latitude in April 2016. The experiment results show that the typical feature of the echo aspect sensitivity is significantly changed compared with that of normal days. Reasons of the echo anomaly are studied by analyzing echo characteristics variations, wind field spatial distributions, turbulence generation mechanisms and Inertia Gravity Waves (IGWs) effects. The result demonstrates that the dissipating (or even breaking) of upward IGWs coming from convection system might feed the long-time persistence of Kelvin-Helmholtz (K-H) instability, which further tilts the horizontal reflection layer and results in the intense turbulence and the echo enhancement.

     

  • loading
  • [1]
    GAGE K S, GREEN J L. Evidence for specular reflection from monostatic VHF radar observations of the stratosphere[J]. Radio Sci., 1978, 13(6):991-1001
    [2]
    RÖTTGER J, LIU C H. Partial reflection and scattering of VHF radar signals from the clear atmosphere[J]. Geophys. Res. Lett., 1978, 5(5):357-360
    [3]
    TSUDA T, VANZANDT T E, SAITO H. Zenith-angle dependence of VHF specular reflection echoes in the lower atmosphere[J]. J. atmos. Terr. Phys., 1997, 59(7):761-775
    [4]
    HU Xiong, ZENG Zhen, ZHANG Dongya, et al. Observations of the mesosphere and lower thermosphere angular spectrum with an MF radar at Wuhan[J]. Chin. J. Space Sci., 2003, 23(4):256-261(胡雄, 曾桢, 张冬娅,等. 武汉中层、低热层大气角谱中频雷达观测[J]. 空间科学学报, 2003, 23(4):256-261)
    [5]
    JAIN A R, RAO Y J, RAO P B. Aspect sensitivity of the received radar backscatter at VHF:Preliminary observations using the Indian MST radar[J]. Radio Sci., 1997, 32(3):1249-1260
    [6]
    ZHANG Peichang, DU Bingyu, DAI Tiepi. Radar Meteorology[M]. Beijing:China Meteorological Press, 2001(张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京:气象出版社, 2001)
    [7]
    HOCKING W K, FUKAO S, YAMAMOTO M, et al. Viscosity waves and thermal-conduction waves as a cause of "specular" reflectors in radar studies of the atmosphere[J]. Radio Sci., 1991, 26(5):1281-1303
    [8]
    LUCE H, CROCHET M, DALAUDIER F, et al. Interpretation of VHF ST radar vertical echoes from in situ temperature sheet observations[J]. Radio Sci., 1995, 30(4):1003-1025
    [9]
    GAGE K S, BALSLEY B B. On the scattering and reflection mechanisms contributing to clear air radar echoes from the troposphere, stratosphere, and mesophere[J]. Radio Sci., 1980, 15(2):243-257
    [10]
    DOVIAK R J, ZRNIC D S. Reflection and scatter formula for anisotropically turbulent air[J]. Radio Sci., 1984, 19(1):325-336
    [11]
    KUMAR K K. VHF radar observations of convectively generated gravity waves:Some new insights[J]. Geophys. Res. Lett., 2006, 330(1):311-330
    [12]
    LUCE H, NISHI N, CACCIA J L, et al. Kelvin-Helmholtz billows generated at a cirrus cloud base within a tropopause fold/upper-level frontal system[J]. Geophys. Res. Lett., 2012, 39(4):4807
    [13]
    YAMAMOTO M K, MASATOMO F, TAKESHI H, et al. Correction to "Kelvin-Helmholtz instability around the tropical tropopause observed with the Equatorial Atmosphere Radar"[J]. Geophys. Res. Lett., 2003, 30(9):319-338
    [14]
    DAS S S, PATRA A K, NARAYANA R D. VHF radar echoes in the vicinity of tropopause during the passage of tropical cyclone:First observations from the Gadanki MST radar[J]. J. Geophys. Res., 2008, 16(113):D09113
    [15]
    DAS S S, KUMAR K K, UMA K N, et al. Modulation of thermal structure in the Upper Troposphere and Lower Stratosphere (UTLS) region by inertia gravity waves:a case study inferred from simultaneous MST radar and GPS sonde observations[J]. Indian J. Radio Space Phys., 2014, 43(1):11-23
    [16]
    WORTHINGTON R M, PALMER R D, FUKAO S. An investigation of tilted aspect-sensitive scatterers in the lower atmosphere using the MU and Aberystwyth VHF radars[J]. Radio Sci., 1999, 34(2):413-426
    [17]
    WORTHINGTON R M, PALMER R D, FUKAO S. Complete maps of the aspect sensitivity of VHF atmospheric radar echoes[J]. Ann. Geophys, 1999, 17:1116-1119
    [18]
    HUAMAN M M, BALSLEY B B. Long-term-mean aspect sensitivity of PMSE determined from Poker Flat MST radar data[J]. Geophys. Res. Lett., 1998, 25(25):947-950
    [19]
    SWARNALINGAM N, HOCKING W K, DRUMMOND J R. Long-term aspect-sensitivity measurements of polar mesosphere summer echoes (PMSE) at Resolute Bay using a 51.5MHz VHF radar[J]. J. atmos. Terr. Phys., 2011, 73(9):957-964
    [20]
    SMIRNOVA M, BELOVA E, KIRKWOOD S. Aspect sensitivity of polar mesosphere summer echoes based on ESRAD MST radar measurements in Kiruna, Sweden in 1997-2010[J]. Ann. Geophys, 2012, 30(3):457-465
    [21]
    CHEN G, CUI X, CHEN F L, et al. MST Radars of Chinese Meridian Project:System Description and Atmospheric Wind Measurement[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(8):4513-4523
    [22]
    DAS S S, VENKAT R M, UMA K N, et al. Stratospheric intrusion into the troposphere during the tropical cyclone Nilam (2012)[J]. Q. J. R. Meteorol. Soc., 2016, 142(698):2168-2179
    [23]
    LUCE H, FUKAO S, DALAUDIER F, et al. Strong Mixing Events Observed near the Tropopause with the MU Radar and High-Resolution Balloon Techniques[J]. J. Atmos. Sci., 2002, 59(20):2885-2896
    [24]
    GHOSH A K, DAS S S, PATRA A K, et al. Aspect sensitivity in the VHF radar backscatters studied using simultaneous observations of Gadanki MST radar and GPS sonde[J]. Ann. Geophys., 2004, 22(11):4013-4023
    [25]
    BROWNING K A, WATKINS C D. Observations of Clear Air Turbulence by High Power Radar[J]. Nature, 1970, 227(5255):260-263
    [26]
    WORTHINGTON R M, THOMAS L. Long-period unstable gravity-waves and associated VHF radar echoes[J]. Annales Geophysicae, 1997, 15(6):813-822
    [27]
    FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1), 1003, doi: 10.1029/2001RG000106
    [28]
    LUCE H, HASSENPFLUG G, Yamamoto M, et al. High-Resolution Observations with MU Radar of a KH Instability Triggered by an Inertia Gravity Wave in the Upper Part of a Jet Stream[J]. J. Atmos. Sci., 2008, 65(5):1711-1718
    [29]
    FRITTS D C, RASTOGI P K. Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere:Theory and observations[J]. Radio Sci., 2016, 20(6):1247-1277
    [30]
    FUJIWARA M, YAMAMOTO M K, HASHIGUCHI H, et al. Turbulence at the tropopause due to breaking Kelvin waves observed by the Equatorial Atmosphere Radar[J]. Geophys. Res. Lett., 2003, 30(4):20-21
    [31]
    MEGA T, YAMAMOTO M K, LUCE H, et al. Turbulence generation by Kelvin-Helmholtz instability in the tropical tropopause layer observed with a 47MHz range imaging radar[J]. J. Geophys. Res. Atmos., 2010, 115(D18):D118115
    [32]
    PAVELIN E, WHITEWAY J A, VAUGHAN G. Observation of gravity wave generation and breaking in the lowermost stratosphere[J]. J. Geophys. Res., 20011, 06(D6), 5173-5179
    [33]
    ZHANG S D, YI F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E) China[J]. Ann. Geophys., 2005, 23(3):665-673
    [34]
    QING H, ZHOU C, ZHAO Z, et al. A statistical study of inertia gravity waves in the troposphere based on the measurements of Wuhan Atmosphere Radio Exploration (WARE) radar[J]. J. Geophys. Res., 2014, 119(7):3701-3714
    [35]
    HU X, LIU A Z, GARDNER C S, et al. Characteristics of quasi-monochromatic gravity waves observed with Na lidar in the mesopause region at Starfire Optical Range, NM[J]. Geophys. Res. Lett., 2002, 29(24):22-1-22-4
    [36]
    YU Y, YAN Z, HICKEY M P. Lower thermospheric response to atmospheric gravity waves induced by the 2011 Tohoku tsunami[J]. J. Geophy. Res. Space Physics, 2015, 120(6):5062-5075
    [37]
    ZHANG Shaodong, YI Fan. Breaking of a upward propagating gravity wave packet[J]. Chin. J. Geophys., 1999, 42(3):289-295(张绍东, 易帆. 重力波波包在向上传播过程中的破碎[J]. 地球物理学报, 1999, 42(3):289-295)
    [38]
    PAVELIN E, WHITEWAY J A. Gravity wave interactions around the jet stream[J]. Geophy. Res. Lett, 2002, 29(29):20-21
    [39]
    MA Lanmeng, ZHANG Shaodong, YI Fan. Radiosonde observations of lower atmospheric gravity wave momentum flux spectra at a single midlatitude station[J]. Chin. J. Geophys., 2012, 55(10):3194-3202(马兰梦, 张绍东, 易帆. 中纬低层大气重力波动量通量谱的探空观测[J]. 地球物理学报, 2012, 55(10):3194-3202)
    [40]
    FRITTS D C, ARENDT S, ANDREASSEN Ø. The vorticity dynamics of instability and turbulence in a breaking internal gravity wave[J]. Earth Planets Space, 1999, 51(7/8):457-473
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1456) PDF Downloads(1677) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return