Volume 38 Issue 5
Sep.  2018
Turn off MathJax
Article Contents
ZHAO Xinhua, ZHANG Min, WANG Yuming, HE Jiansen, NING Hao, QIN Gang. Interplanetary Physics in Mainland China[J]. Chinese Journal of Space Science, 2018, 38(5): 665-693. doi: 10.11728/cjss2018.05.665
Citation: ZHAO Xinhua, ZHANG Min, WANG Yuming, HE Jiansen, NING Hao, QIN Gang. Interplanetary Physics in Mainland China[J]. Chinese Journal of Space Science, 2018, 38(5): 665-693. doi: 10.11728/cjss2018.05.665

Interplanetary Physics in Mainland China

doi: 10.11728/cjss2018.05.665
More Information
  • Author Bio:

    ZHAO Xinhua,xhzhao@spaceweather.ac.cn

  • Received Date: 2017-06-12
  • Publish Date: 2018-09-15
  • During the past two years (2016-2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics:solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability; instrument; Coronal Mass Ejections (CMEs) and their interplanetary counterparts; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.

     

  • loading
  • [1]
    RUAN W Z, HE J S, ZHANG L, et al. Kinetic simulation of slow magnetosonic waves and quasi-periodic upflows in the solar corona[J]. Astrophys. J., 2016, 825:58
    [2]
    YANG L P, FENG X S, HE J S, et al. A self-consistent numerical study of the global solar wind driven by the unified nonlinear Alfven wave[J]. Solar. Phys., 2016, 291(3):953-963
    [3]
    PEI Z, HE J, WANG X, et al. Influence of intermittency on the anisotropy of magnetic structure functions of solar wind turbulence[J]. J. Geophys. Res.:Space Phys., 2016, 121(2):911-924
    [4]
    YANG L, HE J, TU C, et al. Multiscale pressurebalanced structures in three-dimensional magnetohydrodynamic turbulence[J]. Astrophys. J., 2017, 836:69-77
    [5]
    YANG L, HE J, TU C, et al. Influence of intermittency on the quasi-perpendicular scaling in three-dimensional magnetohydrodynamic turbulence[J]. Astrophys. J., 2017, 846:49
    [6]
    YANG L, ZHANG L, HE J, et al. Formation and properties of tangential discontinuities in three-dimensional compressive MHD turbulence[J]. Astrophys. J., 2017, 851(2):121
    [7]
    WANG X, TU C Y, HE J S, et al. Reexamination of data analysis for -2 spectral index at small theta-VB angle[R]//Proceedings of the 14th Solar Wind Conference, 2016, 1720:040020
    [8]
    WANG X, TU C Y, HE J S, et al. On the weakly anisotropic nature of the time-stationary turbulence in the solar wind[C]//Proceedings of the 14th Solar Wind Conference, 2016, 1720:040019
    [9]
    TU C Y, WANG X, HE J S, et al. The nature of the slow solar wind turbulence[R]//Proceedings of the 14th Solar Wind Conference, 2016, 1720:040017
    [10]
    WANG X, TU C Y, HE J S, et al. Ion-scale spectral break in the normal plasma beta range in the solar wind turbulence[J]. J. Geophys. Res.:Space Phys., 2018, 123:68
    [11]
    WANG X, TU C Y, HE J S, et al. Possible noise nature of Elsässer variable z- in highly Alfvénic solar wind fluctuations[J]. J. Geophys. Res.:Space Phys., 2018, 123:57
    [12]
    YANG Z C, SHEN F, ZHANG J, et al. Correlation between the magnetic field and plasma parameters at 1 AU[J]. Solar Phys., 2018, 293:24
    [13]
    YANG L P, ZHANG L, HE J S, et al. Disappearance of anisotropic intermittency in large-amplitude MHD turbulence and its comparison with small-amplitude MHD turbulence[J]. Astrophys. J., 2018, 855:69
    [14]
    ZHANG Q H, WANG Y M, LIU R, et al. Damped large amplitude oscillations in a solar prominence and a bundle of coronal loops[J]. Res. Astron. Astrophys., 2016, 16:167
    [15]
    WANG W S, LIU R, WANG Y M. Tornado-like evolution of a kink-unstable solar prominence[J]. Astrophys. J., 2017, 834:38
    [16]
    LIU J J, WANG Y M, ERDELYI R, et al. On the magnetic and energy characteristics of recurrent homologous jets from an emerging flux[J]. Astrophys. J., 2016, 833:150
    [17]
    LIU J J, FANG F, WANG Y M, et al. On the observation and simulation of solar coronal twin jets[J]. Astrophys. J., 2016, 817:126
    [18]
    WANG B, CHEN Y, FU J, et al. Dynamics of a prominence-horn structure during its evaporation in the solar corona[J]. Astrophys J., 2016, 827(2):L33
    [19]
    ZHENG R, ZHANG Q, CHEN Y, et al. Interaction of two filaments in a long filament channel associated with twin coronal mass ejections[J]. Astrophys J., 2017, 8366(2):160
    [20]
    SONG H Q, CHEN Y, LI B, et al. The origin of solar filament plasma inferred from in situ observations of elemental abundances[J]. Astrophys. J. Lett., 2017, 836(1):L11
    [21]
    ZHENG R, CHEN Y, WANG B, et al. Interchange reconnection associated with a confined filament eruption:implications for the source of transient cold-dense plasma in Solar winds[J]. Astrophys. J., 2017, 840(1):3
    [22]
    WANG Y M, ZHOU Z J, ZHANG J, et al. Thermodynamic spectrum of solar flares based on SDO/EVE observations:techniques and first results[J]. Astrophys. J. Supp., 2016, 223:4
    [23]
    GOU T Y, LIU R, WANG Y M, et al. Stereoscopic observation of slipping reconnection in a double candle-flameshaped flare[J]. Astrophys. J. Lett., 2016, 821:L28
    [24]
    LIU R, CHEN J, WANG Y M, et al. Investigating energetic X-shaped flares on the outskirts of a solar active region[J]. Sci. Rep., 2016, 6:34021
    [25]
    WU Z, CHEN Y, HUANG G, et al. Microwave imaging of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare[J]. Astrophys. J., 2016, 820(2):L29
    [26]
    ZHENG R, CHEN Y, WANG B. Slipping magnetic reconnections with multiple flare ribbons during an X-class solar flare[J]. Astrophys. J., 2016, 823(2):136
    [27]
    CHEN Y, WU Z, LIU W, et al. Double-coronal X-ray and microwave sources associated with a magnetic breakout solar eruption[J]. Astrophys. J., 2017, 843(1):8
    [28]
    SONG Q, WANG J S, FENG X S, et al. Dark post-flare loops observed by the solar dynamics observatory[J]. Astrophys. J., 2016, 821:83
    [29]
    JIANG C W, WU S T, YURCHYSHYN V, et al. How did a major confined flare occur in super solar active region 12192[J]. Astrophys. J., 2016, 828:62
    [30]
    FENG SW, CHEN Y, SONG HQ, et al. An imaging study of a complex solar coronal radio eruption[J]. Astrophys. J., 2016, 827(1):L9
    [31]
    KOVAL A, STANISLAVSKY A, CHEN Y, et al. A decameter stationary type iv burst in imaging observations on 2014 September 6[J]. Astrophys J., 2016, 826(2):125
    [32]
    KONG X, CHEN Y, FENG S, et al. Observation of a metric type N solar radio burst[J]. Astrophys. J., 2016, 830(1):37
    [33]
    VASANTH V, CHEN Y, FENG S, et al. An eruptive hot-channel structure observed at metric wavelength as a moving type-IV solar radio burst[J]. Astrophys. J., 2016, 830(1):L2
    [34]
    LI C Y, CHEN Y, WANG B, et al. EUV and magnetic activities associated with type-I solar radio bursts[J]. Solar Phys., 2017, 292(6):82
    [35]
    KOVAL A, CHEN Y, STANISLAVSKY A, et al. Traveling ionospheric disturbances as huge natural lenses:solar radio emission focusing effect[J]. J. Geophys. Res. Sp. Phys., 2017, 122:9092-9101
    [36]
    LÜ M S, CHEN Y, LI CY, et al. Sources of the multilane type Ⅱ solar radio burst on 5 November 2014[J]. Solar Phys., 2017, 2922(12):194
    [37]
    KONG X, CHEN Y, GUO F. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field[R]. AIP Conf. Proc., 2016, 1720:070003
    [38]
    KONG X, CHEN Y, GUO F, et al. Electron acceleration at a coronal shock propagating through a largescale streamer-like magnetic field[J]. Astrophys J., 2016, 821(1):32
    [39]
    KONG X, GUO F, GIACALONE J, et al. The acceleration of high-energy protons at coronal shocks:the effect of large-scale streamer-like magnetic field structures[J]. Astrophys. J., 2017, 851(1):38
    [40]
    WANG W S, LIU R, WANG Y M, et al. Buildup of a highly twisted magnetic flux rope during a solar eruption[J]. Nat. Comm., 2017, 8:1330
    [41]
    WANG Y M, ZHUANG B, HU Q, et al. On the twists of interplanetary magnetic flux ropes observed at 1 AU[J]. J. Geophys. Res., 2016, 121:9316-9339
    [42]
    LIU R, KLIEM B, TITOV V S, et al. Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist[J]. Astrophys. J., 2016, 818:148
    [43]
    ZHANG Q H, WANG Y M, HU Y Q, et al. Influence of photospheric magnetic conditions on the catastrophic behaviors of flux ropes in active regions[J]. Astrophys. J., 2017, 835:11
    [44]
    ZHANG Q H, WANG Y M, HU Y Q, et al. Downward catastrophe of solar magnetic flux ropes[J]. Astrophys. J., 2016, 825:109
    [45]
    LIU C X, FENG X S, NAKAMURA R, et al. Doublepeaked core field of flux ropes during magnetic reconnection[J]. J. Geophys. Res. Space Phys., 2017, 122:6374-6384
    [46]
    YANG L P, PETER H, HE J S, et al. Formation of cool and warm jets by magnetic flux emerging from the solar chromosphere to transition region[J]. Astrophys. J., 2018, 852:16
    [47]
    TIAN C, CHEN Y. Numerical simulations of KelvinHelmholtz instability:a two-dimensional parametric study[J]. Astrophys J., 2016, 824:60
    [48]
    DU Q F, CHEN L, ZHAO Y-C, et al. A solar radio dynamic spectrograph with flexible temporal-spectral resolution[J]. Res Astron Astrophys., 2017, 17:98
    [49]
    FAN S T, HE J S, YAN L M, et al. Turbulence and heating in the flank and wake regions of a coronal mass ejection[J]. Solar Phys., 2018, 293(1):6
    [50]
    MAO S, HE J, ZHANG L, et al. Numerical study of erosion, heating, and acceleration of the magnetic cloud as impacted by fast shock[J]. Astrophys. J., 2017, 842:109
    [51]
    LIU L J, WANG Y M, WANG J X, et al. Why is a flare-rich active region CME-poor[J]. Astrophys. J., 2016, 826:119
    [52]
    LIU L J, WANG Y M, LIU R, et al. The causes of quasihomologous CMEs[J]. Astrophys. J., 2017, 844:141
    [53]
    SHEN F, WANG Y M, SHEN C L, et al. Turn on the super-elastic collision nature of coronal mass ejections through low approaching speed[J]. Sci. Rep., 2016, 6:19576
    [54]
    SHEN F, WANG Y M, SHEN C L, et al. On the collision nature of two coronal mass ejections:a review[J]. Solar Phys., 2017, 292:104
    [55]
    GUO J P, WEI F S, FENG X S, et al. Prolonged multiple excitation of large-scale Traveling Atmospheric Disturbances (TADs) by successive and interacting coronal mass ejections[J]. J. Geophys. Res., 2016, 121:2662-2668
    [56]
    WANG Y M, ZHANG Q H, LIU J J, et al. On the propagation of a geoeffective coronal mass ejection during March 1517, 2015[J]. J. Geophys. Res., 2016, 121:7423-7434
    [57]
    ZHAO A K, WANG Y M, CHI Y T, et al. Main cause of the poloidal plasma motion inside a magnetic cloud inferred from multiple-spacecraft observations[J]. Solar Phys., 2017, 292:58
    [58]
    ZHAO A K, WANG Y M, LIU J J, et al. The role of viscosity in causing the plasma poloidal motion in magnetic clouds[J]. Astrophys. J.,2017, 845:109
    [59]
    ZHANG B, WANG Y M, SHEN C L, et al. The significance of the influence of the CME deflection in interplanetary space on the CME arrival at the earth[J]. Astrophys. J., 2017, 845:117
    [60]
    CHI Y T, SHEN C L, WANG Y M, et al. Statistical study of the interplanetary coronal mass ejections from 1996 to 2015[J]. Solar Phys., 2016, 291:2419-2439
    [61]
    CHEN Y, DU G, ZHAO D, et al. Imaging a magnetic-breakout solar eruption[J]. Astrophys J., 2016, 820(2):L37
    [62]
    ZHENG R, CHEN Y, DU G, et al. Solar Jetcoronal hole collision and a closely related coronal mass ejection[J]. Astrophys J., 2016, 819(2):L18
    [63]
    SONG H Q, ZHONG Z, CHEN Y, et al. A statistical study of the average iron charge state distributions inside magnetic clouds for solar cycle 23[J]. Astrophys. J. Suppl. Ser., 2016, 224(2):27
    [64]
    SONG H Q, CHENG X, CHEN Y, et al. The three-part structure of a filament-unrelated solar coronal mass ejection[J]. Astrophys J., 2017, 848(1):21
    [65]
    HU H D, LIU Y D, WANG R, et al. Sun-to-Earth characteristics of the 2012 July 12 coronal mass ejection and associated geo-effectiveness[J]. Astrophys. J., 2016, 829:97
    [66]
    ZHU B, LIU Y D, LUHMANN J G, et al. Solar energetic particle event associated the 2012 July extreme solar storm[J]. Astrophys J., 2016, 827
    [67]
    WANG R, LIU Y D, ZIMOVETS I, et al. Sympathetic solar filament eruptions[J]. Astrophys. J., 2016, 827:L12
    [68]
    LIU Y D, HU H D, WANG C, et al. On Sun-to-Earth propagation of coronal mass ejecctions:Ⅱ slow events and comparison with others[J]. Astrophys. J. Supp., 2016, 222:23
    [69]
    WANG R, LIU Y D, WIEGELMANN T, et al. Relationship between sunspot rotation and a major solar eruption on 12 July 2012[J]. Solar Phys., 2016, 291:11591171
    [70]
    HU H D, LIU Y D, WANG R, et al. Multi-spacecraft observations of the coronal and interplanetary evolution of a solar eruption associated with two active regions[J]. Astrophys. J., 2016, 840:76
    [71]
    LIU Y D, ZHAO X W, ZHU B. Propagation and interaction properties of successive coronal mass ejections in relation to a complex type Ⅱ radio burst[J]. Astrophys J., 2017, 849:112
    [72]
    LIU Y D, HU H D, ZHU B, et al. Structure, propagation, and expansion of a CME-driven shock in the heliosphere:A review of the 2012 July 23 extreme storm[J]. Astrophys J., 2017, 834:158
    [73]
    ZHAO X W, LIU Y D, HU H D, et al. Propagation characteristics of two coronal mass ejections from the sun far into interplanetary space[J]. Astrophys. J., 2017, 837:4
    [74]
    LIU Y A, LIU Y D, HU H D, et al. Multi-spacecraft observations of the rotation and nonradial motion of a CME flux rope causing an intense geomagnetic storm[J]. Astrophys. J., 2018, 854:126
    [75]
    ZHAO X H, LIU Y D, INHESTER B, et al. Comparison of CME/shock propagation models with heliospheric imaging and in situ observations[J]. Astrophys J., 2016, 830:48
    [76]
    ZHAO X H, FENG X S, FENG H Q, et al. Correlation between angular widths of CMEs and characteristics of their source regions[J]. Astrophys. J., 2017, 849:79
    [77]
    XIONG M, DAVIES J A, HARRISON R A, et al. Prospective out-of-ecliptic white-light imaging of coronal mass ejections traveling through the corona and heliosphere[J]. Astrophys. J., 2018, 852:111
    [78]
    WU S T, ZHOU Y F, JIANG C W, et al. A dataconstrained three-dimensional magnetohydrodynamic simulation model for a coronal mass ejection initiation[J]. J. Geophys. Res.:Space Phys., 2016, 121:1009-1023
    [79]
    JIANG C W, FENG X S, WU S T. Analyses of the photospheric magnetic dynamics in solar active region 11117 using an advanced CESE-MHD model[J]. Front. Astron. Space Sci., 2016, 3:16
    [80]
    JIANG C W, WU S T, FENG X S, et al. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption[J]. Nature Commun., 2016, 7:11522
    [81]
    ZHANG J K, LI H C.Two upstream splitting schemes for generalized Lagrange multiplier magnetohydrodynamics[J]. Chin. J. Space Sci., 2017, 37(1):8-18
    [82]
    LIU Q, LI H C. Improvement and application of LaxFriderichs scheme in MHD numerical simulation[J]. Chin. J. Space Sci., 2016, 36(6):857-865
    [83]
    XIONG M, DAVIES J A, LI B, et al. Prospective Out-ofecliptic white-light Imaging of interplanetary corotating interaction regions at solar maximum[J]. Astrophys. J., 2017, 844:76
    [84]
    YANG Y, FENG X S, JIANG C W. A high-order CESE scheme with a new divergence-free method for MHD numerical simulation[J]. J. Comput. Phys., 2017, 349:561-581
    [85]
    FENG X S, LI C X, XIANG C Q, et al. Data-driven modeling of the solar corona by a new three-dimensional path-conservative Osher-Solomon MHD model[J]. Astrophys. J. Supp. Ser., 2017, 233:10
    [86]
    ZHOU Y F, FENG X S. Numerical study of the propagation characteristics of coronal mass ejections in a structured ambient solar wind[J]. J. Geophys. Res.:Space Phys., 2017, 122:1451-1462
    [87]
    HAYASHI K, FENG X S, XIONG M, et al. An MHD simulation of solar active region 11158 driven with a timedependent electric field determined from HMI Vector magnetic field measurement data[J]. Astrophys. J., 2018, 855:11
    [88]
    WANG W, WANG L, KRUCKER S, et al. Simulation of Quiet-Sun Hard X-Rays Related to Solar Wind Superhalo Electrons[J]. Solar Phys., 2016, 291(5):1357-1367
    [89]
    QIN G, SHALCHI A. Numerical test of different approximation used in the transport theory of energetic particles[J]. Astrophys. J., 2016, 823:23
    [90]
    WANG J F, QIN G, MA Q M, et al. Perpendicular diffusion coefficient of comic rays:the presence of weak adiabatic focusing[J]. Astrophys. J., 2017, 845:112
    [91]
    WANG J F, QIN G, MA Q M, et al. Magnetic field line random walk in two-dimensional dynamical turbulence[J]. Phys. Plasmas, 2017, 24:082901
    [92]
    QI S Y, QIN G, WANG Y. Numerical simulations of solar energetic particle event timescales associated with ICMES[J]. Res. Astron. Astrophys., 2017, 809(4):11-22
    [93]
    KONG F J, QIN G, ZHANG L H. Numerical simulations of particle acceleration at interplanetary quasiperpendicular shocks[J]. Astrophys. J., 2017, 845:43
    [94]
    SHEN Z N, QIN G. A study of cosmic ray flux based on the noise in raw CCD data from solar images[J]. J. Geophys. Res.:Space Phys., 2016, 121:10712-10727
    [95]
    WU S S, QIN G. Model of energy spectrum parameters of ground level enhancement events in solar cycle 23[J]. J. Geophys. Res.:Space Phys., 2018, 123(1):76
    [96]
    QIN G, SHEN Z N. Modulation of galactic cosmic rays in the inner heliosphere, comparing with PAMELA measurements[J]. Astrophys. J., 2017, 846:56
    [97]
    LUO X, POTGIETER M S, ZHANG M, et al. A numerical simulation of cosmic ray modulation near the heliopause Ⅱ. Some physical insights[J]. Astrophys. J., 2016, 826:182
    [98]
    LUO X, POTGIETER M S, ZHANG M, et al. A numerical study of forbush decreases with a 3D cosmic-ray modulation model based on an SDE approach[J]. Astrophys. J., 2017, 839:53
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(739) PDF Downloads(1699) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return