Volume 39 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
KONG Fanjing, QIN Gang. 90°Pitch Angle Enhancements of Suprathermal Electrons Associated with the Interplanetary Shock on 24 April 2008[J]. Chinese Journal of Space Science, 2019, 39(2): 143-148. doi: 10.11728/cjss2019.02.143
Citation: KONG Fanjing, QIN Gang. 90°Pitch Angle Enhancements of Suprathermal Electrons Associated with the Interplanetary Shock on 24 April 2008[J]. Chinese Journal of Space Science, 2019, 39(2): 143-148. doi: 10.11728/cjss2019.02.143

90°Pitch Angle Enhancements of Suprathermal Electrons Associated with the Interplanetary Shock on 24 April 2008

doi: 10.11728/cjss2019.02.143
  • Received Date: 2018-04-20
  • Rev Recd Date: 2018-06-27
  • Publish Date: 2019-03-15
  • Using test particle simulations, the 90° pitch angle enhancements of suprathermal electrons associated with the interplanetary shock on 24 April 2008 observed by STEREO-A spacecraft have been studied. Firstly, the initial distribution function for each pitch angle channel is obtained by fitting the observed distribution at a given time before the shock arrival, and then the time-backward method is used to calculate the pitch angle distributions of suprathermal electrons downstream of the shock for a given energy channel. Due to the higher resonance frequency of suprathermal electrons, the turbulence spectrum includes the dissipation range in which low-energy electrons resonate. Three energy channels with central energies of 215.76 eV, 151.67 eV, and 106.63 eV are simulated. The results show that a peak of the pitch angle distributions downstream of the shock obtained for these energy channels appears near the 90° pitch angle. The enhancement at the 90° pitch angle is in good agreement with the observations. The resonance between suprathermal electrons and the turbulence dissipation range in the process of shock acceleration is suggested to play a crucial role in this phenomenon. A thorough study of the electric and magnetic field fluctuations at interplanetary shocks can provide a better understanding of the nature of 90° pitch angle enhancements of suprathemal electrons.

     

  • loading
  • [1]
    MONTGOMERY M D, BAME S J, HUNDHAUSEN A J. Solar wind electrons:vela 4 measurements[J]. J. Geophys. Res., 1968, 73(15):4999-5003
    [2]
    FELDMAN W C, ASBRIDGE J R, BAME S J, et al. Characteristic electron variations across simple highspeed solar wind streams[J]. J. Geophys. Res., 1978, 83(A11):5285-5295
    [3]
    PILIPP W G, MIGGENRIEDER H, MONTGOMERY M D, et al. Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment[J]. J. Geophys. Res., 1987, 92(A2):1075-1092
    [4]
    MAKSIMOVIC M, ZOUGANELIS I, CHAUFRAY J Y, et al. Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU[J]. J. Geophys. Res., 2005, 110(A9):A09104
    [5]
    LIN R P. Wind observations of suprathermal electrons in the interplanetary medium[J]. Space Sci. Rev., 1998, 86(1/2/3/4):61-78
    [6]
    LEMONS D S, FELDMAN W C. Collisional modification to the exospheric theory of solar wind halo electron pitch angle distributions[J]. J. Geophys. Res., 1983, 88(A9):6881-6887
    [7]
    PAGEL C, GARY S P, DE KONING C A, et al. Scattering of suprathermal electrons in the solar wind:ACE observations[J]. J. Geophys. Res., 2007, 112(A4):A04103
    [8]
    VOCKS C, MANN G. Generation of suprathermal electrons by resonant wave-particle interaction in the solar corona and wind[J]. Astrophys. J., 2003, 593(2):1134-1145
    [9]
    VOCKS C, SALEM C, LIN R P, et al. Electron halo and strahl formation in the solar wind by resonant interaction with whistler waves[J]. Astrophys. J., 2005, 627(1):540-549
    [10]
    SAITO S, GARY S P. Whistler scattering of suprathermal electrons in the solar wind:particle-in-cell simulations[J]. J. Geophys. Res., 2007, 112(A6):A06116
    [11]
    GOSLING J T, SKOUG R M, FELDMAN W C. Solar wind electron halo depletions at pitch angle[J]. Geophys. Res. Lett., 2001, 28(22):4155-4158
    [12]
    KAJDIC P, LAVRAUD B, ZASLAVSKY A, et al. Ninety degrees pitch angle enhancements of suprathermal electrons associated with interplanetary shocks[J]. J. Geophys. Res., 2014, 119(9):7038-7060
    [13]
    MATTHAEUS W H, GOLDSTEIN M L, ROBERTS D A. Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind[J]. J. Geophys. Res., 1990, 95(A12):20673-20683
    [14]
    ZANK G P, MATTHAEUS W H. Waves and turbulence in the solar wind[J]. J. Geophys. Res., 1992, 97(A11):17189-17194
    [15]
    BIEBER J W, WANNER W, MATTHAEUS W H. Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport[J]. J. Geophys. Res., 1996, 101(A2):2511-2522
    [16]
    GRAY P C, PONTIUS D H JR, MATTHAEUS W H. Scaling of field-line random walk in model solar wind fluctuations[J]. Geophys. Res. Lett., 1996, 23(9):965-968
    [17]
    ZANK G P, LI G, FLORINSKI V, et al. Particle acceleration at perpendicular shock waves:Model and observations[J]. J. Geophys. Res., 2006, 111(A6):A06108
    [18]
    QIN G, KONG F J, ZHANG L H. Effects of shock and turbulence properties on electron acceleration[J]. Astrophys. J., 2018, 860(1):3-11
    [19]
    LI G, KONG X, ZANK G, et al. On the spectral hardening at 300 keV in solar flares[J]. Astrophys. J., 2013, 769(1):22
    [20]
    QIN G, MATTHAEUS W H, BIEBER J W. Subdiffusive transport of charged particles perpendicular to the large scale magnetic field[J]. Geophys. Res. Lett., 2002, 29(4):1048
    [21]
    QIN G, MATTHAEUS W H, BIEBER J W. Perpendicular transport of charged particles in composite model turbulence:Recovery of diffusion[J]. Astrophys. J. Lett., 2002, 578(2):L117-L120
    [22]
    KONG F J, QIN G, ZHANG L H. Numerical simulations of particle acceleration at interplanetary quasiperpendicular shocks[J]. Astrophys. J., 2017, 845(1):43
    [23]
    LIU Y D, LUHMANN J G, KAJDIC P, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections[J]. Nat. Commun., 2014, 5:3481
    [24]
    LIU Y, RICHARDSON J D, BELCHER J W, et al. Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections[J]. J. Geophys. Res., 2006, 111(A9):A09108
    [25]
    LIU Y, RICHARDSON J D, BELCHER J W, et al. Temperature anisotropy in a shocked plasma:Mirror-mode instabilities in the heliosheath[J]. Astrophys. J. Lett., 2007, 659(1):L65-L68
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1271) PDF Downloads(450) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return