Volume 39 Issue 3
May  2019
Turn off MathJax
Article Contents
WANG Yizhou, HUANG Yingying, LI Huijun, LI Chongyin. Analysis of Stratospheric Gravity Wave Parameters Based on COSMIC Observationsormalsize[J]. Chinese Journal of Space Science, 2019, 39(3): 326-341. doi: 10.11728/cjss2019.03.326
Citation: WANG Yizhou, HUANG Yingying, LI Huijun, LI Chongyin. Analysis of Stratospheric Gravity Wave Parameters Based on COSMIC Observationsormalsize[J]. Chinese Journal of Space Science, 2019, 39(3): 326-341. doi: 10.11728/cjss2019.03.326

Analysis of Stratospheric Gravity Wave Parameters Based on COSMIC Observationsormalsize

doi: 10.11728/cjss2019.03.326
  • Received Date: 2018-05-29
  • Rev Recd Date: 2019-01-04
  • Publish Date: 2019-05-15
  • Using the temperature profiles between 30°N and 40°N latitude observed by COSMIC satellites from 29 December 2006 to 3 January 2008, the disturbances and potential energy (Ep) of Gravity Waves (GWs) in lower stratosphere are calculated by vertical running windows method, double-filter method and single-filter method, respectively. The altitude and longitude distributions, and multi-time scale variations of these parameters are obtained. The spatial characteristics of background temperature and horizontal wind fields are analyzed to investigate the possible origins of GWs. The disturbances and potential energy (Ep) of GWs in lower stratosphere obtained by the above three methods are compared. The results are as follows. The errors of GW perturbations calculated by vertical running windows method are relatively large, because it can only remove the disturbances with large vertical scales, while can not remove small vertical scales in derived GW disturbances. The double-filter can well suppress both large-scale background and small-scale disturbances in temperature profiles. GW disturbances obtained by a single-filter does not include large vertical scale background, but still contain some small vertical scale disturbances. The double-filter method cannot obtain altitude variations of Ep, while the single-filter method can give altitude variations of monthly averaged Ep. The relationships between GWs' parameters (including disturbances and Ep) and background temperature and horizontal wind fields are revealed.

     

  • loading
  • [1]
    LÜ Daren, BIAN Jianchun, CHEN Hongbin, et al. The frontier and importance of the stratospheric atmospheric process research[J]. Earth Prog. Sci., 2009, 24(3):221-228(吕达仁, 卞建春, 陈洪滨, 等.平流层大气过程研究的前沿与重要性[J]. 地球进展科学, 2009, 24(3):221-228)
    [2]
    FRITTS D C. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1). DOI: 10.1029/2001RG000106
    [3]
    NASTROM G D, FRITTS D C. Sources of mesoscale variability of gravity waves. part I:topographic excitation[J]. J. Atmos. Sci., 2003, 49(2):101-110
    [4]
    DING Xia. Gravity Waves Generated by Convection and Their Interactions with Mean Flow[D]. Wuhan:Wuhan University, 2011(丁霞. 对流激发重力波及波目互作用研究[D]. 武汉:武汉大学, 2011)
    [5]
    PLOUGONVEN R, ZHANG F. Internal gravity waves from atmospheric jets and fronts[J]. Rev. Geophys., 2003, 52(1):33-76
    [6]
    LI Wei, YI Fan. Research on correlation between gravity waves energy and jet[J]. Chin. J. Space Sci., 2011, 31(3):311-317(李伟, 易帆, 急流与低层大气重力波能量的相关性研究[J]. 空间科学学报, 2011, 31(3):311-317)
    [7]
    SCOTT R B, GOFF J A, NAVEIRA GARABATO A C, et al. Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography[J]. J. Geophys. Res., 2013, 116(C9):DOI: 10.1029/2011JC007005
    [8]
    LOVEGROVE A F, READ P L, RICHARDS C J. Generation of inertia-gravity waves in a baroclinically unstable fluid[J]. Q. J. Roy. Meteor. Soc., 2000, 126(570):3233-3254
    [9]
    HUNSUCKER R D. Atmospheric gravity waves generated in the high-latitude ionosphere:a review[J]. Rev. Geophys., 1982, 20(2):293-315
    [10]
    TAYLOR M J, JAHN J M, FUKAO S, et al. Possible evidence of gravity wave coupling into the mid-latitude F region ionosphere during the SEEK campaign[J]. Geophys. Res. Lett., 1998, 25(11):1801-1804
    [11]
    ZHANG S D, YI F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 1140° E) China[J]. Ann. Geophys., 2005, 23(3):665-673
    [12]
    XU Kai, YAO Zhigang, HAN Zhigang, et al. Recent process in near-space gravity wave analysis based on satellite measurements[J]. Adv. Earth Sci., 2017, 32(1):66-74(徐凯, 姚志刚, 韩志刚, 等.临近空间重力波强扰动的卫星观测研究进展[J]. 地球科学进展, 2017, 32(1):66-74)
    [13]
    ROCKEN C, YINGHWA K, SCHREINER W S, et al. COSMIC system description[J]. Terr. Atmos. Ocean. Sci., 2000, 11(1):21-52
    [14]
    ANTHES R A, ECTOR D D, HUNT Y H, et al. The COSMIC/FORMOSAT-3 mission:early results[J]. Bull. Am. Meteor. Soc., 2008, 89(3):313-333
    [15]
    ALEXANDER S, KLEKOCIUK A, TSUDA T. Gravity wave and orographic wave activity observed around the antarctic and arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation[J]. J. Geophys. Res.:Atmos., 2009, 114(D17). DOI: 10.1029/2008JD011851
    [16]
    ALEXANDER S, TSUDA T, KAWATANI Y. COSMIC GPS observations of northern hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model[J]. Geophys. Res. Lett., 2008, 35(10). DOI: 10.1029/2008GL033174
    [17]
    LIANG Chen. Preliminary Study on the Global Stratospheric Gravity Waves Based on COSMIC Satellite Observations[D]. Beijing:University of Science and Technology China, 2014(梁晨. 基于COSMIC卫星观测的全球平流层大气重力波初步研究[D]. 北京:中国科学技术大学, 2014)
    [18]
    HORINOUCHI T, TSUDA T. Spatial structures and statistics of atmospheric gravity waves derived using a heuristic vertical cross-section extraction from COSMIC GPS radio occultation data[J]. J. Geophys. Res.:Atmos., 2009, 114(D16). DOI: 10.1029/2008JD011068
    [19]
    WANG L, ALEXANDER M J. Global estimates of gravity wave parameters from GPS radio occultation temperature data[J]. J. Geophys. Res., 2010, 115(D21). DOI: 10.1029/2010JD013860
    [20]
    WANG Xuelian. Using High-Resolution Radiosonde Data to Analyze the Location of the Tropical Lower Stratospheric Gravity Wave Activity[D]. Nanjing:Nanjing University of Information Science and Technology, 2006(王雪莲.利用高分辨探空资料分析热带下平流层重力波活动[D]. 南京:南京信息工程大学,2006)
    [21]
    HE W, HOU S P, CHEN H, et al. Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data[J]. Geophys. Res. Lett., 2009, 36(17). DOI: 10.1029/2009GL038712
    [22]
    DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-interim reanalysis:configuration and performance of the data assimilation system[J]. Q. J. Roy. Meteor. Soc., 2011, 137(656):553-597
    [23]
    HOCKE K, TSUDA T. Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation[J]. Geophys. Res. Lett., 2001, 28(14):2815-2818
    [24]
    TSUDA T, NISHIDA M, ROCKEN C. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET)[J]. J. Geophys. Res.:Atmos., 2000, 105(D6):7257-7273
    [25]
    ALEXANDER S, TSUDA T, KAWATANI Y, et al. Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere:COSMIC observations of wave mean flow interactions[J]. J. Geophys. Res.:Atmos., 2009, 113(D24). DOI: 10.1029/2008JD010374
    [26]
    FORBES J M, ZHANG X, PALO S E, et al. Kelvin waves in stratosphere, mesosphere and lower thermosphere temperatures as observed by TIMED/SABER during 2002-2006[J]. Earth Planets Space, 2009, 61(4):447-453
    [27]
    SCHMIDT T, DE LA TORRE A, WICKERT J. Global gravity wave activity in the tropopause region from CHAMP radio occultation data[J]. Geophys. Res. Lett., 2008, 35(16):L16087
    [28]
    SANTER B D. Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations:decadal changes[J]. J. Geophys. Res., 2003, 108(D1). DOI: 10.1029/2002JD002258
    [29]
    DE LA TORRE A, ALEXANDER P, LLAMEDO P, et al. Gravity waves above the andes detected from GPS radio occultation temperature profiles:jet mechanism[J]. Geophys. Res. Lett., 2006, 33(24). DOI: 10.1029/2006GL027343
    [30]
    ZHANG S D, YI F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114 E) China[J]. Ann. Geophys., 2005, 23(3):665-673
    [31]
    ZHANG S D, YI F, HUANG C M, et al. High vertical resolution analyses of gravity waves and turbulence at a midlatitude station[J]. J. Geophys. Res.:Atmos., 2012, 117(D2). DOI: 10.1029/2011JD016587
    [32]
    ZHANG S D, YI F, HUANG C M, et al. Latitudinal and altitudinal variability of lower atmospheric inertial gravity waves revealed by U.S. radiosonde data[J]. J. Geophys. Res.:Atmos., 2013, 118(14):7750-7764
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(3155) PDF Downloads(12119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return