Volume 39 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
MEI Dengkui, WEN Debao. Comparative Analysis of Two Precise Processing Methods for MGEX BDS Differential Code Biases[J]. Chinese Journal of Space Science, 2019, 39(5): 662-669. doi: 10.11728/cjss2019.05.662
Citation: MEI Dengkui, WEN Debao. Comparative Analysis of Two Precise Processing Methods for MGEX BDS Differential Code Biases[J]. Chinese Journal of Space Science, 2019, 39(5): 662-669. doi: 10.11728/cjss2019.05.662

Comparative Analysis of Two Precise Processing Methods for MGEX BDS Differential Code Biases

doi: 10.11728/cjss2019.05.662
  • Received Date: 2018-12-03
  • Rev Recd Date: 2019-02-26
  • Publish Date: 2019-09-15
  • Differential Code Bias (DCB) is one of the systematic errors that must be dealt with in BDS-based high-precision positioning and ionospheric modeling. Firstly, two different processing strategies proposed by DLR and CAS for estimating BDS differential code biases are introduced respectively. Secondly, using the BDS differential code bias products released by MGEX in 2017 and June 2018, the variation characteristics of daily solutions, monthly mean values and the stability of BDS satellite DCB estimated by DLR and CAS, respectively, are compared and analyzed in this paper. The results show that both the DLR DCB and CAS DCB exhibited high stability in 2017, and the stability of C2I-C7I DCB was better than that of C2I-C6I DCB. Besides, the stability of monthly mean values of BDS satellite DCB was better than that of daily solutions. In June 2018, the stability of DLR DCB is slightly better than that of CAS DCB, and the difference between DLR DCB and CAS DCB ranged from -0.58ns to 1.07ns, indicating that the BDS satellite DCB estimated by CAS and DLR had a good consistency. BDS satellite DCB products provided by DLR and CAS have high reliability in correcting differential code biases for global BDS users.

     

  • loading
  • [1]
    WANG Ningbo. Study on GNSS Differential Code Biases and Global Broadcast Ionospheric Models of GPS, Galileo and BDS[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2016(王宁波. GNSS差分码偏差处理方法及全球广播电离层模型研究[D]. 武汉:中国科学院测量与地球物理研究所, 2016)
    [2]
    YUAN Yunbin, OU Jikun. The effects of instrumental bias in GPS observations on determining ionospheric delays and the methods of its calibration[J]. Acta Geod. Cartogr. Sin., 1999, 28(2):110-114(袁运斌, 欧吉坤. GPS观测数据中的仪器偏差对确定电离层延迟的影响及处理方法[J]. 测绘学报, 1999, 28(2):110-114)
    [3]
    LIU Qiankun, SUI Lifen, XIAO Guorui, et al. Quality analysis of MGEX BDS differential code bias[J]. J. Geod. Geodyn., 2016, 36(11):963-967, 1002(刘乾坤, 隋立芬, 肖国锐, 等. MGEX北斗差分码偏差产品质量分析[J]. 大地测量与地球动力学, 2016, 36(11):963-967, 1002)
    [4]
    ZHANG Qiang, ZHAO Qile, ZHANG Hongping, et al. BDS differential code bias estimation using Beidou experimental tracking stations[J]. Geomat. Inform. Sci. Wuhan Univ., 2016, 41(12):1649-1655(张强, 赵齐乐, 章红平, 等. 利用北斗观测实验网解算北斗卫星差分码偏差[J]. 武汉大学学报:信息科学版, 2016, 41(12):1649-1655)
    [5]
    MONTENBRUCK O, HAUSCHILD A, STEIGENBERGER P. Differential code bias estimation using multi-GNSS observations and global ionosphere maps[J]. Navigation, 2014, 6(13):191-201
    [6]
    JIN Shuanggen, JIN Rui, LI Du. Assessment of Beidou differential code bias variations from multi-GNSS network observations[J]. Ann. Geophys., 2016, 34(2):259-269
    [7]
    FAN Jiachen,WU Xiaoli, LI Yuxiang, et al. COMPASS satellites DCB parameter accuracy assessment based on tri-frequency data[J]. Chin. Space Sci. Technol., 2013, 33(4):62-70(樊家琛, 吴晓莉, 李宇翔, 等. 基于三频数据的北斗卫星导航系统DCB参数精度评估方法[J]. 中国空间科学技术, 2013, 33(4):62-70)
    [8]
    SHU Bao, LIU Hui, ZHANG Ming, et al. Evaluation and analysis of BDS instrumental biases[J]. Geomat. Inform. Sci. Wuhan Univ., 2016, 41(2):279-284(舒宝, 刘晖, 张明, 等. 北斗系统硬件延迟解算及精度分析[J]. 武汉大学学报:信息科学版, 2016, 41(2):279-284)
    [9]
    WANG Ningbo, YUAN Yunbin, LI Zishen, et al. Determination of differential code biases with multi-GNSS observations[J]. J. Geod., 2016, 90(3):209-228
    [10]
    LI Zishen, YUAN Yunbin, LI Hui, et al. Two-step method for the determination of the differential code biases of COMPASS satellites[J]. J. Geod., 2012, 86:1059-1076
    [11]
    LIU Chen, LIU Changjian, BAO Yadong, et al. Some problems pertinent to shell height in ionospheric modeling[J]. Chin. J. Space Sci., 2018, 38(1):37-47(刘宸, 刘长建, 鲍亚东, 等. 电离层薄层高度对电离层模型化的影响[J]. 空间科学学报, 2018, 38(1):37-47)
    [12]
    HERNANDEZ-PAJARES M, JUAN J, SANZ J, et al. The IGS VTEC maps:A reliable source of ionospheric information since 1998[J]. J. Geod., 2009, 83(3):263-275
    [13]
    ZHANG Baocheng, TEUNISSEN P J G, YUAN Yunbin, et al. A modified carrier-to-code leveling method for retrieving ionospheric observables and detecting short-term temporal variability of receiver differential code biases[J]. J. Geod., 2018, 93(1):19-28
    [14]
    LI Zishen, YUAN Yunbin, WANG Ningbo, et al. SHPTS:towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions[J]. J. Geod., 2015, 89(4):331-345
    [15]
    ZHAO Wenjiao, WANG Hu, DANG Yamin, et al. Characteristics of multi-GNSS global ionospheric modeling and analysis of the accuracy[J]. Chin. J. Space Sci., 2015, 35(3):306-314(赵文娇, 王虎, 党亚民, 等. 多GNSS全球电离层建模特性及其精度检验[J]. 空间科学学报, 2015, 35(3):306-314)
    [16]
    JIN Yaqi, ZHANG Donghe, LIU Yumei, et al. Influence of ionospheric variability in solar maximum and solar minimum period on the stability of estimated GPS instrumental biases[J]. Chin. J. Space Sci., 2013, 33(4):427-435(金亚奇, 张东和, 刘玉梅, 等. 不同太阳活动条件下电离层形态对估算GPS系统硬件延迟的影响[J]. 空间科学学报, 2013, 33(4):427-435)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1309) PDF Downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return