Volume 40 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
LI Yongtao, ZHOU Wei, LI Jianwen, CHE Tongyu, JING Xin. Analysis of Spatial Variation Characteristics of Regional Ionospheric TEC Grid Based on Crustal Movement Observation Network of China[J]. Chinese Journal of Space Science, 2020, 40(2): 197-206. doi: 10.11728/cjss2020.02.197
Citation: LI Yongtao, ZHOU Wei, LI Jianwen, CHE Tongyu, JING Xin. Analysis of Spatial Variation Characteristics of Regional Ionospheric TEC Grid Based on Crustal Movement Observation Network of China[J]. Chinese Journal of Space Science, 2020, 40(2): 197-206. doi: 10.11728/cjss2020.02.197

Analysis of Spatial Variation Characteristics of Regional Ionospheric TEC Grid Based on Crustal Movement Observation Network of China

doi: 10.11728/cjss2020.02.197
  • Received Date: 2019-01-30
  • Rev Recd Date: 2019-08-04
  • Publish Date: 2020-03-15
  • In order to study the variation characteristics and the applicable accuracy range of ionospheric TEC in small-scale, high-resolution space in the Crustal Movement Observation Network of China (CMONOC) region of China, 260 CORS data of the CMONOC are used to generate the 731-day CMONOC ionospheric RIM grids from 2016 to 2017, and the accuracy is verified. In the same RIM grid, the TEC grid points with different latitudinal and longitudinal are analyzed in the longitude and latitude directions respectively. The results show that the maximum change rate of the TEC difference in the longitudinal direction of the CMONOC region is about 0.3TECU·(°)-1, and the average rate of TEC change is about 0.11TECU·(°)-1. When the longitude interval is 1°, the TEC difference is less than 2TECU. As the longitude interval increases, its TEC difference also increases and shows a certain half-year and annual variation. The maximum value of the TEC difference in the latitudinal direction is about 1.7TECU·(°)-1. The average change rate of TEC is approximately 0.46TECU·(°)-1. The ionospheric TEC in the CMONOC region increases with the decrease of latitude. When the latitude interval is 1°, 99.4% TEC differences are less than 4TECU. As the latitude interval increases, the TEC difference also increases. It also shows a certain half-year and annual variation law. In the case of the same degree of interval, the change of TEC in the latitudinal direction is larger than that in the longitudinal direction.

     

  • loading
  • [1]
    YUAN Yunbin. Study on Theories and Methods of Correcting Ionospheric Delay and Monitoring Ionosphere Based on GPS[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2002
    [2]
    ZHAO Haishan,YANG Li, XU Shiyi, et al. The Study of the Ionospheric Variations during European Regional Geomagnetic Storms Based on Ionospheric Tomography[C]//China Satellite Navigation Conference, 2017
    [3]
    YANG Li. The Theory and Research of Atmosphere Affection to GPS Surveying[D]. Zhengzhou:The PLA Information Engineering University, 2001
    [4]
    GALAV P, DASHORA N, SHARMA S, et al. Characterization of low latitude GPS-TEC during very low solar and activity phase[J]. J. Atmos. Solar Terr. Phys., 2010, 72:1309-1317
    [5]
    DING Zonghua, CHEN Chun. Preliminary analysis of the ionospheric dispersion effect on linear polarization radar signal[J]. Chin. J. Radio Sci., 2011, 26(1):30-34(丁宗华, 陈春. 电离层色散效应对线极化雷达信号的影响分析[J]. 电波科学学报, 2011, 26(1):30-34)
    [6]
    ZHANG Xiao. Study and Application of Ionospheric Tomography Algorithms with Smoothing Constraints[D]. Changsha:Changsha University of Science and Technology, 2016
    [7]
    BILITZA D, MCKINNELL LA, REINISCH B, et al. The international reference ionosphere today and in the future[J]. J. Geodesy, 2011, 85(12):909-920
    [8]
    WU Yewen. Characteristic of the Ionospheric Total Electron Content Based on The Measurements of Global Navigation Satellites[D]. Xi'an:Xidian University, 2013
    [9]
    MANNUCCI A J, WILSON B D, YUAN D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Sci., 1998, 33(3):565-582
    [10]
    CAI Changsheng, GAO Jingxiang. Inversion of the temporal and spatial variations of ionospheric TEC using GPS measurements[J]. J. Liaoning Technol. Univ.:Nat. Sci., 2009, 28(5):41-44(蔡昌盛, 高井祥. 利用GPS观测值反演电离层总电子含量的时空变化[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(5):41-44)
    [11]
    KANG Juan. Researches on Ionosphere Modeling of Global Navigation Satellite System[D]. Changsha:Hunan University, 2015
    [12]
    ZHANG Hongping. Research on Regional Ionospheric Monitoring and Delay Correction in China Based on Ground-Based GPS[D]. Shanghai:Shanghai Astronomical Observatory Chinese Academy of Sciences, 2007
    [13]
    HAN Jide, WANG Zushun, WANG Chunqing. Analysis of temporal and spatial change in global ionosphere[J]. J. Geomat., 2012, 37(6):26-29(韩吉德, 王祖顺, 王春青. 全球电离层时空变化特性分析[J]. 测绘地理信息, 2012, 37(6):26-29)
    [14]
    KOU Ruixiong, LI Zhongqin, GAO Zhiyu. Monitoring temporal and spatial variations of ionospheric TEC using GPS measurements[J]. GNSS World China, 2018, 43(4):36-41, 72(寇瑞雄, 李仲勤, 高志钰. 利用GPS观测值监测电离层的时空变化[J]. 全球定位系统, 2018, 43(4):36-41, 72)
    [15]
    KONG Debao. Temporal and Spatial Distributions of TEC Depletions and Multi-instruments Observation of Irregularities over South China[D]. Guangzhou:South China University of Technology, 2015
    [16]
    LI Qiang, NING Baiqi, ZHAO Biqiang, et al. Applications of the CMONOC based GNSS data in monitoring and investigation of ionospheric space weather[J]. Chin. J. Geophys., 2012, 55(7):2193-2202(李强, 宁百齐, 赵必强, 等. 基于陆态网络GPS数据的电离层空间天气监测与研究[J]. 地球物理学报, 2012, 55(7):2193-2202)
    [17]
    YUAN Yunbin, LI Zishen, WANG Ningbo, et al. Precise modeling of ionospheric delay over China region based on collocation[J]. J. Nav. Posit., 2015, 3(3):49-55(袁运斌, 李子申, 王宁波, 等. 基于拟合推估的中国区域电离层延迟精确建模方法[J]. 导航定位学报, 2015, 3(3):49-55)
    [18]
    WEN Debao, LV Huizhu, ZHANG Xiao. Analyses of tomography results for the ionospheric temporal-spatial characteristics in low-latitude region[J]. Chin. J. Geophys., 2014, 34(6):72-75(闻德保, 吕慧珠, 张啸. 低纬地区电离层时空分布特征的层析结果分析[J]. 大地测量与地球动力学, 2014, 34(6):72-75)
    [19]
    YANG Kefan. Research on Modeling of Regional Ionosphere Based on GNSS and Application In PPP[D]. Zhengzhou:The PLA Information Engineering University, 2017(杨克凡. GNSS区域电离层建模及在PPP中的应用研究[D]. 郑州:解放军信息工程大学, 2017)
    [20]
    HE L M, WU L X, Liu S J, et al. Superimposed disturbance in the ionosphere triggered by spacecraft launches in China[J]. Ann. Geophys., 2015, 33:1361-1368
    [21]
    SCHAER Stefan, GURTNER Werner. IONEX:The IONosphere Map Excrowe Format Version 1[R]. Switzerland:Astronomical Institute at University of Berne, 1998
    [22]
    YUE Caiya, DANG Yamin, YANG Qiang. The influence of China's current plate movement on reference state station stability of the land state network[J]. Eng. Surv. Map., 2017, 26(3):32-36(岳彩亚, 党亚民, 杨强, 等. 中国现今板块运动对陆态网基准站稳定性影响[J]. 测绘工程, 2017, 26(3):32-36)
    [23]
    LIU Guangming, TANG Yingzhe, QIN Xianping, et al. GPS precise orbit determination of crustal movement observation network[J]. Eng. Surv. Map., 2013, 22(4):38-41(刘光明, 唐颖哲, 秦显平, 等. 陆态网GPS精密定轨方法与精度分析[J]. 测绘工程, 2013, 22(4):38-41)
    [24]
    OUYANG Mingda, ZHANG Haidong, ZHANG Yingli. Analysis of regional water vapor changing based on CMONOC[J]. GNSS World China, 2014, 39(1):61-64, 75(欧阳明达, 张海东, 张英利. 基于陆态网络的区域水汽变化分析[J]. 全球定位系统, 2014, 39(1):61-64, 75)
    [25]
    LIU Xiaoxiang. Analysis of Coordinate Time Series of CMONOC GPS Fiducial Stations Using Principal Component Analysis[D]. Chengdu:Southwest Jiaotong University, 2017
    [26]
    CHANG Xin, ZHANG Wei. Real time regional ionospheric TEC modeling and single-frequency PPP experiment[J]. Chin. J. Geophys., 2013, 33(4):39-43(畅鑫, 张伟. 实时区域电离层TEC建模与单频PPP实验[J]. 大地测量与地球动力学, 2013, 33(4):39-43)
    [27]
    ZHANG Shuo. Research on Real-time Estimation and Prediction Method of the Ionosphere TEC[D]. Zhengzhou:The PLA Information Engineering University, 2017(张硕. 电离层TEC实时估计与预测方法研究[D]. 郑州:解放军信息工程大学, 2017)
    [28]
    GAN Y, LIU Z Z. Precise ionosphere modeling using regional GPS network data[J]. J. Global Posit. Syst., 2002, 1(1):18-24
    [29]
    LI Yongtao, LI Jianwen, PANG Peng, et al. Analysis of the magnetic storm's influence on ionospheric TEC in September 2017[J]. GNSS World China, 2018, 43(4):42-47(李涌涛, 李建文, 庞鹏, 等. 2017年9月磁暴期间电离层TEC变化分析[J]. 全球定位系统, 2018, 43(4):42-47)
    [30]
    XU Kaimin, LIU Ruihua, WANG Jian. Comparison and analysis of ionospheric delay correction methods based on Beidou GEO[J]. GNSS World China, 2018, 43(2):33-39(薛凯敏, 刘瑞华, 王剑. 基于北斗GEO的电离层延迟修正方法比较与分析[J]. 全球定位系统, 2018, 43(2):33-39)
    [31]
    Li Zhenghang, Huang Jinsong. GPS Surveying and Data Processing[M]. Wuhan:Wuhan University Press, 2005(李征航,黄劲松. GPS测量与数据处理[M]. 武汉:武汉大学出版社, 2005)
    [32]
    LI Zishen, WANG Ningbo, LI Min, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS service[J]. Chin. J. Geophys., 2017, 60(10):3718-3729(李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10):3718-3729)
    [33]
    HE Yujing. Study on GPS Ionospheric Delay Correction and Analysis of Disturbance Monitoring[D]. Zhengzhou:The PLA Information Engineering University, 2006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1022) PDF Downloads(239) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return