Volume 40 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
SONG Xiaojian, ZUO Pingbing, SHEN Xiaochen. ULF Wave in the Magnetotail Plasma Sheet Induced by Interplanetary Shock[J]. Chinese Journal of Space Science, 2020, 40(4): 462-470. doi: 10.11728/cjss2020.04.462
Citation: SONG Xiaojian, ZUO Pingbing, SHEN Xiaochen. ULF Wave in the Magnetotail Plasma Sheet Induced by Interplanetary Shock[J]. Chinese Journal of Space Science, 2020, 40(4): 462-470. doi: 10.11728/cjss2020.04.462

ULF Wave in the Magnetotail Plasma Sheet Induced by Interplanetary Shock

doi: 10.11728/cjss2020.04.462
  • Received Date: 2019-07-06
  • Rev Recd Date: 2019-12-03
  • Publish Date: 2020-07-15
  • Ultra Low Frequency (ULF) waves play an important role in energy transport from the solar wind into the magnetosphere. The ULF waves have often been observed in the dayside magnetosphere, which affects the acceleration and deceleration of energetic particles in inner magnetosphere, and is also responsible for the particle precipitation. There have been few reports of ULF wave activity on the nightside. Here based on the observations of TC-1 in the magnetotail central plasma sheet, two ULF wave events induced by two interplanetary shocks are identified and analyzed. East-west magnetic and radial electric field perturbations, which denote the toroidal mode, are found to be stronger for the two cases and their phase difference are nearly 90°. These features are consistent with previous observations from THEMIS. Several possible mechanisms for these kinds of ULF wave excitation are discussed according to the observational characteristics. It helps to deepen the understanding of the global response of the magnetosphere to interplanetary shocks.

     

  • loading
  • [1]
    SAMSON J C, HARROLD B G, RUOHONIEMI J M, et al. Field line resonances associated with MHD waveguides in the magnetosphere[J]. Geophys. Res. Lett., 1992, 19(5):441-444
    [2]
    ZONG Q, WANG Y, YUAN C, et al. Fast acceleration of "killer" electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere[J]. Chin. Sci. Bull., 2011, 56:1188-1201
    [3]
    O'BRIEN T P, MCPHERRON R L, SORNETTE D, et al. Which magnetic storms produce relativistic electrons at geosynchronous orbit[J]. J. Geophys. Res., 2001, 106(A8):15533-15544
    [4]
    RAE I J, WATT C E J, FENRICH F R, et al. Energy deposition in the ionosphere through a global field line resonance[J]. Ann. Geophys., 2008, 25(12):2529-2539
    [5]
    GREENWALD R A, WALKER A D M. Energetics of long period resonant hydromagnetic waves[J]. Geophys. Res. Lett., 1980, 7(10):745-748
    [6]
    SAMSON J C, COGGER L L, PAO Q. Observations of field line resonances, auroral arcs, and auroral vortex structures[J]. J. Geophys. Res., 1996, 101(A8):17373-17384
    [7]
    SOUTHWOOD D J. Some features of field line resonances in the magnetosphere[J]. Planet. Space Sci., 1974, 22(3):483-491
    [8]
    BLANCO-CANO X, OMIDI N, RUSSELL C T. Global hybrid simulations:foreshock waves and cavitons under radial interplanetary magnetic field geometry[J]. J. Geophys. Res.:Space Phys., 2009, 114(A1):A01216. DOI: 10.1029/2008JA013406
    [9]
    TAKAHASHI K, MCPHERRON R L, TERASAWA T. Dependence of the spectrum of Pc 3-4 pulsations on the interplanetary magnetic field[J]. J. Geophys. Res., 1984, 89(A5):2770-2780
    [10]
    PU Z Y, KIVELSON M G. Kelvin-Helmholtz instability at the magnetopause:solution for compressible plasmas[J]. J. Geophys. Res., 1983, 88(A2):841-852
    [11]
    MENK F W. Magnetospheric ULF Waves:a Review[M]. Dordrecht:Springer, 2011:223-256
    [12]
    SIBECK D G. A model for the transient magnetospheric response to sudden solar wind dynamic pressure variations[J]. J. Geophys. Res., 1990, 95(A4):3755-3771
    [13]
    SHEN X C, SHI Q Q, WANG B Y, et al. Dayside magnetospheric and ionospheric responses to a foreshock transient on 25 June 2008:1. FLR observed by satellite and ground-based magnetometers[J]. J. Geophys. Res.:Space Phys., 2018, 123(8):6335-6346
    [14]
    TIAN A M, SHEN X C, SHI Q Q, et al. Dayside magnetospheric and ionospheric responses to solar wind pressure increase:Multispacecraft and ground observations[J]. J. Geophys. Res.:Space Phys., 2016, 121(11):10813-10830
    [15]
    SHI Q Q, HARTINGER M, ANGELOPOULOS V, et al. THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events[J]. J. Geophys. Res.:Space Phys., 2013, 118(1):284-298
    [16]
    LIU Z X, ESCOUBET C P, PU Z, et al. The Double Star mission[J]. Ann. Geophys., 2005, 23(8):2707-2712
    [17]
    YAO Li, LIU Zhenxing, ZUO Pingbing, et al. Response of properties in the plasma sheet and at the geosynchronous orbit to interplanetary shock[J]. Chin. Sci. Bull., 2009, 54(17):2533-2541(姚丽, 刘振兴, 左平兵, 等. 磁尾等离子体片和地球同步轨道区域对行星际激波的响应[J]. 科学通报, 2009, 54(17):2533-2541)
    [18]
    YAO L, ZUO P B, FENG X S, et al. Responses of the magnetotail plasma sheet to two interplanetary shocks:TC-1 observations[J]. Chin. Sci. Bull., 2010, 55(6):530-538
    [19]
    SONNERUP B U Ö, SCHEIBLE M. Minimum and Maximum Variance Analysis[M]. Analysis Methods for Multispacecraft Data. Netherlands:ESA Publications Division, 1998:185-220
    [20]
    HARTINGER M, ANGELOPOULOS V, MOLDWIN M B, et al. Global energy transfer during a magnetospheric field line resonance[J]. Geophys. Res. Lett., 2011, 38(12):L1201
    [21]
    KIVELSON M G, SOUTHWOOD D J. Resonant ULF waves:a new interpretation[J]. Geophys. Res. Lett., 1985, 12(1):49-52
    [22]
    RICHARD G J, WRIGHT A N. ULF pulsations in a magnetospheric waveguide:comparison of real and simulated satellite data[J]. J. Geophys. Res., 1995, 100(A3):3531-3538
    [23]
    MANN I R, WRIGHT A N, CALLY P S. Coupling of magnetospheric cavity modes to field line resonances:a study of resonance widths[J]. J. Geophys. Res., 1995, 100(A10):19441-19456
    [24]
    ERIKSSON P T I, BLOMBERG L G, SCHAEFER S, et al. On the excitation of ULF waves by solar wind pressure enhancements[J]. Ann. Geophys., 2006, 24(11):3161-3172
    [25]
    ZHAO H Y, SHEN X C, TANG B B, et al. Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease[J]. J. Geophys. Res.:Space Phys., 2016, 121(2):1071-1077
    [26]
    SHI Q Q, HARTINGER M D, ANGELOPOULOS V, et al. Solar wind pressure pulse-driven magnetospheric vortices and their global consequences[J]. J. Geophys. Res.:Space Phys., 2014, 119(6):4274-4280
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(786) PDF Downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return