Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 234-241. doi: 10.11728/cjss2021.02.234
Citation: SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 234-241. doi: 10.11728/cjss2021.02.234

Magnetopause Indentation Induced by the Magnetosheath Fast Flowormalsize

doi: 10.11728/cjss2021.02.234
  • Received Date: 2019-08-18
  • Rev Recd Date: 2020-03-06
  • Publish Date: 2021-03-15
  • Recent studies indicated that the magnetopause indentation plays an important role in magnetosphere-ionosphere coupling. Confirmation of magnetopause indentation requires joint observations with multiple satellites. So far, there have been few magnetopause indentation events reported. In this paper, a case of magnetopause indentation induced by fast magnetosheath flow is reported with multiple spacecraft analysis based on the observations of five THEMIS probes. During the interval from 10:00 UT to 10:45 UT on 21 July 2007, when the five THEMIS probes are located near the subsolar magnetopause, a fast anti-sunward flow (with a velocity of 400km·-1) was observed in the magnetosheath just before THEMIS crossed the magnetopause to the magnetosphere. A magnetopause local indentation event was identified by comparing the nominal magnetopause and the tangential magnetopause plane calculated using the MVA method. In order to explore the origin of this magnetosheath fast flow, solar wind data observed by WIND satellite at L1 point were analyzed. It is found that the solar wind is very stable during this period. The Interplanetary Magnetic Field (IMF) is mainly radial and the component of the north-south direction is very small. It is speculated that the generation of this magnetosheath fast anti-sunward flow may be related to the radial IMF.

     

  • loading
  • [1]
    CAHILL L J, AMAZEEN P G. The boundary of the geomagnetic field[J]. J. Geophys. Res., 1963, 68(7):1835-1843
    [2]
    HASEGAWA H. Structure and dynamics of the magnetopause and its boundary layers[J]. Monogr. Environ. Earth Planets, 2012, 1(2):71-119
    [3]
    SPREITER J R, BRIGGS B R. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth[J]. J. Geophys. Res., 1962, 67(1):37-51
    [4]
    PHAN T D, PASCHMANN G. Low-latitude dayside magnetopause and boundary layer for high magnetic shear:1. Structure and motion[J]. J. Geophys. Res.:Space Phys., 1996, 101(A4):7801-7815
    [5]
    SHUE J H, CHAO J K, SONG P, et al. Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields[J]. Geophys. Res. Lett., 2009, 36(18):18112
    [6]
    JELINEK K, NEMECEK Z, SAFRANKOVA J, et al. Thin magnetosheath as a consequence of the magnetopause deformation:THEMIS observations[J]. J. Geophys. Res.:Space Phys., 2010, 115(A10):A10203
    [7]
    FAIRFIELD D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J. Geophys. Res., 1971, 76(28):6700-6716
    [8]
    PETRINEC S P, SONG P, RUSSELL C T. Solar-cycle variations in the size and shape of the magnetopause[J]. J. Geophys. Res.:Space Phys., 1991, 96(A5):7893-7896
    [9]
    SHUE J H, CHAO J K, FU H C, et al. A new functional form to study the solar wind control of the magnetopause size and shape[J]. J. Geophys. Res., 1997, 102(A5):9497-9511
    [10]
    SONG P, DEZEEUW D L, GOMBOSI T I, et al. A numerical study of solar wind——magnetosphere interaction for northward interplanetary magnetic field[J]. J. Geophys. Res.:Space Phys., 1999, 104(A12):28361-28378
    [11]
    FAIRFIELD D H, BAUMJOHANN W, PASCHMANN G, et al. Upstream pressure variations assocated with the bow shock and their effects on the magnetosphere[J]. J. Geophys. Res.:Space Phys., 1990, 95(A4):3773-3786
    [12]
    FUJITA S, GLASSMEIER K H, KAMIDE K. MHD waves generated by the Kelvin-Helmholtz instability in a nonuniform magnetosphere[J]. J. Geophys. Res.:Space Phys., 1996, 101(A12):27317-27325
    [13]
    GLASSMEIER K H, HEPPNER C. Traveling magnetospheric convection twin vortices-another case study, global characteristics, and a model[J]. J. Geophys. Res.:Space Phys., 1992, 97(A4):3977-3992
    [14]
    PLASCHKE F, ANGELOPOULOS V, GLASSMEIER K H. Magnetopause surface waves:THEMIS observations compared to MHD theory[J]. J. Geophys. Res.:Space Phys., 2013, 118(4):1483-1499
    [15]
    WNAG S, ZONG Q G, ZHANG H. Cases and statistical study on hot flow anomalies with Cluster spacecraft data[J]. Sci. China Tech. Sci., 2012, 42(7):737-754(汪珊, 宗秋刚, 张慧. 基于Cluster卫星观测的太阳风热流异常事件的分析研究[J]. 中国科学:技术科学, 2012, 42(7):737-754)
    [16]
    DMITRIEV A V, SUVOROVA A V. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet:THEMIS and ground-based observations[J]. J. Geophys. Res.:Space Phys., 2012, 117(A8):A08217
    [17]
    SIBECK D G, BORODKOVA N L, SCHWARTZ S J, et al. Comprehensive study of the magnetospheric response to a hot flow anomaly[J]. J. Geophys. Res., 1999, 104(A3):4577-4593
    [18]
    TKACHENKO O, SAFRANKOVA J, NEMECEK Z, et al. Dayside magnetopause transients correlated with changes of the magnetosheath magnetic field orientation[J]. Ann. Geophys., 2011, 29(4):687-699
    [19]
    ELSEN R K, WINGLEE R M. The average shape of the magnetopause:a comparison of three-dimensional global MHD and empirical models[J]. J. Geophys. Res.:Space Phys., 1997, 102(A3):4799-4819
    [20]
    SOTIRELIS T, MENG C I. Magnetopause from pressure balance[J]. J. Geophys. Res.:Space Phys., 1999, 104(A4):6889-6898
    [21]
    DMITRIEV A V, SUVOROVA A V. Three-dimensional artificial neural network model of the dayside magnetopause[J]. J. Geophys. Res.:Space Phys., 2000, 105(A8):18909-18918
    [22]
    WU J G, LUNDSTEDT H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks[J]. J. Geophys. Res., 1997, 102(A7):14255-14268
    [23]
    HAN D S, CHEN X C, LIU J J, et al. An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station[J]. J. Geophys. Res.:Space Phys., 2015, 120(9):7447-7465
    [24]
    HAN D S, NISHINURA Y, LYONS L R, et al. Throat aurora:the ionospheric signature of magnetosheath particles penetrating into the magnetosphere[J]. Geophys. Res. Lett., 2016, 43(5):1819-1827
    [25]
    HAN D S, LIU J J, CHEN X C, et al. Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations[J]. J. Geophys. Res.:Space Phys., 2018, 123(4):2658-2667
    [26]
    HAN D S, HIETALA H, CHEN X C, et al. Observational properties of dayside throat aurora and implications on the possible generation mechanisms[J]. J. Geophys. Res.:Space Phys., 2017, 122(2):1853-1870
    [27]
    SONNERUP B U Ö, SCHEIBLE M. Minimum and maximum variance analysis[M]//Analysis Methods for Multi*spacecraft Data. Netherlands:ESA Publications Division, 1998:185-220
    [28]
    SHUE J H, SONG P, RUSSELL C T, et al. Magnetopause location under extreme solar wind conditions[J]. J. Geophys. Res.:Space Phys., 1998, 103(A8):17691-17700
    [29]
    NEUGEBAUER M, ALEXANDER C. Shuffling foot points and magnetohydrodynamic discontinuities in the solar wind[J]. J. Geophys. Res. Atmosphys., 1991, 96 (A6):9409-9418
    [30]
    Phan T D, EASTWOOD J P, SHAY M A, et al. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath[J]. Nature, 2018, 557(7704):202-206
    [31]
    PHAN T D, LOVE T E, GOSLING J T, et al. Triggering of magnetic reconnection in a magnetosheath current sheet due to compression against the magnetopause[J]. Geophys. Res. Lett., 2011, 38(17):L17101
    [32]
    LIN Y, LEE L C, YAN M. Generation of dynamic pressure pulses downstream of the bow shock by variations in the interplanetary magnetic field orientation[J]. J. Geophys. Res.:Space Phys., 1996, 101(A1):479-493
    [33]
    STERCK D H, LOW B C, POEDTS S. Complex magnetohydrodynamic bow shock topology in field-aligned low-be flow around a perfectly conducting cylinder[J]. Phys. Plasmas, 1998, 5:4015-4027
    [34]
    LIN Y. Generation of anomalous flows near the bow shock by its interaction with interplanetary discontinuities[J]. J. Geophys. Res.:Space Phys., 1997, 102(A11):24265-24281
    [35]
    CABLE S, LIN Y, HOLLOWAY J L. Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock flows with multiple interacting shock fronts[J]. J. Geophys. Res.:Space Phys., 2007, 112(A9):A12299
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(491) PDF Downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return