Volume 41 Issue 3
May  2021
Turn off MathJax
Article Contents
JIN Taifeng, LI Lei, ZHANG Yiteng. Mirror-mode Wave Identification Methods and Their Application to Martian Magnetosheath[J]. Chinese Journal of Space Science, 2021, 41(3): 431-438. doi: 10.11728/cjss2021.03.431
Citation: JIN Taifeng, LI Lei, ZHANG Yiteng. Mirror-mode Wave Identification Methods and Their Application to Martian Magnetosheath[J]. Chinese Journal of Space Science, 2021, 41(3): 431-438. doi: 10.11728/cjss2021.03.431

Mirror-mode Wave Identification Methods and Their Application to Martian Magnetosheath

doi: 10.11728/cjss2021.03.431
  • Received Date: 2019-11-12
  • Rev Recd Date: 2020-09-29
  • Publish Date: 2021-05-15
  • Mirror-mode waves are structures usually seen in plasma with temperature anisotropy, identifiable through features in magnetic field and particle distribution and fluctuation. Two identification methods are analyzed and compared in this paper. Method A uses magnetic field data only, while Method B combines magnetic field and particle data. Method A is based mainly on features of magnetic field variation such as large amplitude fluctuation along background field direction, using magnitude of magnetic field fluctuation ΔB/|B| and angles between background field and maximum/minimum variation direction θmax, θmin as criteria. Method B is based on features such as wave compression, total pressure balance and zero velocity in plasma frame. Identification using data from MAVEN probe in the Martian magnetosheath shows that Method A can cause misidentification under certain circumstances, e.g. magneto-sonic waves. Results of identification using Method A with varying criteria ΔB/|B| and θmin/θmax are studied in the Martian magnetosheath, suggesting threshold values: θmin> 40°, θmax< 40° and ΔB/|B| > 80% can yield satisfying results.

     

  • loading
  • [1]
    HASEGAWA A. Drift mirror instability in the magnetosphere[J]. Phys. Fluids, 1969, 12:2642
    [2]
    SOUTHWOOD D J, KIVELSON M G. Mirror instability: 1. Physical mechanism of linear instability[J]. J. Geophys. Res., 1993, 98(A6):9181-9187
    [3]
    SHEVYREV N N. Mirror mode waves in the Earth's magnetosheath observed by the INTERBALL-1 satellite[J]. Cosmic Res., 2005, 43(4):291-298
    [4]
    LUCEK E A, DUNLOP M W, BALOGH A, et al. Mirror mode structures observed in the dawn-side magnetosheath by Equator-S[J]. Geophys. Res. Lett., 1999, 26(14):2159-2162
    [5]
    JOY S P, KIVELSON M G, WALKER R J, et al. Mirror mode structures in the Jovian magnetosheath[J]. J. Geophys. Res., 2006, 111:A12212
    [6]
    RUSSELL C T, REIDLER W, SCHWINGENSHUH K, et al. Mirror instability in the magnetosphere of comet Halley[J]. Geophys. Res. Lett., 1987, 14:644
    [7]
    GLASSMEIER K H, MOTSCHMANN U, MAZELLE C, et al. Mirror modes and fast magnetosonic waves near the magnetic pileup boundary of comet P/Halley[J]. J. Geophys. Res., 1993, 98(A12):20955-20964
    [8]
    HUDDLESTON D E, STRANGEWAY R J, BLANCO-CANO X, et al. Mirror-mode structures at the Galileo-Io fllyby: Instability criterion and dispersion analysis[J]. J. Geophys. Res., 1999, 104(A8):17479-17489
    [9]
    GENOT V, BUDNIK E, JACQUEY C, et al. Mirror modes observed with Cluster in the Earth's magnetosheath: statistical study and IMF/solar wind dependence[J]. Adv. Geosci., 2009, 14:263-283
    [10]
    SOUCEK J, LUCEK E, DANDOURAS I. Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters[J]. J. Geophys. Res., 2008, 113:A04203
    [11]
    VOLWERK M, ZHANG T L, DELVA M, et al. First identification of mirror mode waves in Venus's magnetosheath[J]. Geophys. Res. Lett., 2008, 35:L12204
    [12]
    ERDOS G, BALOGH A. Statistical properties of mirror mode structures observed by Ulysses in the magnetosheath of Jupiter[J]. J. Geophys. Res., 1996, 101(A1):1-12
    [13]
    TATRALLYAY M, ERDOS G. The evolution of mirror mode fluctuations in the terrestrial magnetosheath[J]. Planet. Space Sci., 2002, 50:593-599
    [14]
    ZHANG T L, RUSSELL C T, BAUMJOHANN W, et al. Characteristic size and shape of the mirror mode structures in the solar wind at 0.72AU[J]. Geophys. Res. Lett., 2008, 35:L10106
    [15]
    SONG P, RUSSELL C T, GARY S P. Identification of low-frequency fluctuations in the terrestrial magnetosheath[J]. J. Geophys. Res., 1994, 99(A4):6011-6025
    [16]
    SONNERUP B U O, CAHILL JR L J. Magnetopause structure and attitude from Explorer 12 observations[J]. J. Geophys. Res., 1967, 72:171
    [17]
    NAGY A F, WINTERHALTER D, SAUER K, et al. The plasma environment of Mars[J]. Space Sci. Rev., 2004, 111:33-144
    [18]
    CONNERNEY J E P, ESPLEY J, LAWTON P, et al. The MAVEN magnetic field investigation[J]. Space Sci. Rev., 2015, 195(1/2/3/4):257-291
    [19]
    HALEAS J S, TAYLOR E R, DALTON G, et al. The slar wind ion analyzer for MAVEN[J]. Space Sci. Rev., 2013, 195(1/2/3/4):DOI: 10.1007/s11214-013-0029-z
    [20]
    EDBERG N J T, LESTER M, COWLEY S W H, et al. Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields[J]. J. Geophys. Lett., 2008, 113:A08206
    [21]
    YAO S T, WANG X G, SHI Q Q, et al. Observations of kinetic-size magnetic holes in the magnetosheath[J]. J. Geophys. Res. Space Phys., 2017, 122:1990-2000
    [22]
    HUANG S Y, DU J W, SAHRAOUI F. A statistical study of kinetic-size magnetic holes in turbulent magnetosheath: MMS observations[J]. J. Geophys. Res. Space Phys., 2017, 122:8577-8588
    [23]
    CALIFANO F, HELLINGERP, KUZNETSOV E, et al. Nonlinear mirror mode dynamics: simulations and modeling[J]. J. Geophys. Res., 2008, 113. DOI: 10.1029/2007JA012898
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(407) PDF Downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return