留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种地基GNSS接收机差分码偏差估算方法

周中华 万祥 程艳 刘志忠 汪文君 张雪丽

周中华, 万祥, 程艳, 刘志忠, 汪文君, 张雪丽. 一种地基GNSS接收机差分码偏差估算方法[J]. 空间科学学报, 2022, 42(1): 170-178. doi: 10.11728/cjss2022.01.201026096
引用本文: 周中华, 万祥, 程艳, 刘志忠, 汪文君, 张雪丽. 一种地基GNSS接收机差分码偏差估算方法[J]. 空间科学学报, 2022, 42(1): 170-178. doi: 10.11728/cjss2022.01.201026096
ZHOU Zhonghua, WAN Xiang, CHENG Yan, LIU Zhizhong, WANG Wenjun, ZHANG Xueli. A Method for Estimating Differential Code Deviation of Ground-based GNSS Receiver (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 170-178.  DOI: 10.11728/cjss2022.01.201026096
Citation: ZHOU Zhonghua, WAN Xiang, CHENG Yan, LIU Zhizhong, WANG Wenjun, ZHANG Xueli. A Method for Estimating Differential Code Deviation of Ground-based GNSS Receiver (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 170-178.  DOI: 10.11728/cjss2022.01.201026096

一种地基GNSS接收机差分码偏差估算方法

doi: 10.11728/cjss2022.01.201026096
基金项目: 国家民用空间基础设施“十二五”陆地观测卫星地面系统建设项目资助
详细信息
    作者简介:

    程艳:E-mail: chengyan_nuc@163.com

  • 中图分类号: P352

A Method for Estimating Differential Code Deviation of Ground-based GNSS Receiver

  • 摘要:

    GNSS不同频点间的码伪距作差会引入信号的差分码偏差(DCB),包括GNSS卫星及地面接收机的DCB。本文提出一种地基GNSS接收机差分码偏差参数估算方法,首先由电离层文件参数作线性插值,计算出电离层延迟误差。之后对IGS站观测文件进行加权最小二乘法估计,得到GPS卫星和地面GNSS接收机的L1C频点和L2P频点间码偏差。该方法能同时获取卫星DCBs与地面GNSS接收机的DCBr,有效解决地面GNSS接收机DCBr获取的问题。通过对估计的卫星DCBs与CODE公布的值进行对比和统计分析,结果表明,两者卫星DCBs(C1P2)之差的RMS均值误差 < 0.3541 ns,地基GNSS接收机DCBr(C1P2)估算精度优于1.6105 ns。

     

  • 图  1  DCB算法流程

    Figure  1.  Flow chart of DCB algorithm

    图  2  CODE中心下载的2015年3月DCB数据

    Figure  2.  DCB data for March 2015 downloaded from CODE Center

    图  3  CODE中心下载的2015年4月DCB数据

    Figure  3.  DCB data for April 2015 downloaded from CODE Center

    图  4  估算的2015年3月卫星C1P2 DCB

    Figure  4.  Estimated satellite C1P2 DCB in March 2015

    图  5  估算的2015年4月卫星C1P2 DCB

    Figure  5.  Estimated satellite C1P2 DCB in April 2015

    图  6  2015年3月CODE公布与估算的C1P2码偏差对比

    Figure  6.  Comparison of the deviation between the CODE published in March 2015 and the estimated C1P2 code

    图  7  2015年4月CODE公布与估算的C1P2码偏差对比

    Figure  7.  Comparison of the deviation between the CODE published in April 2015 and the estimated C1P2 code

    图  8  2015年3月和4月估算的卫星C1P2 DCB RMS误差

    Figure  8.  Estimated Star C1P2 DCB RMS error in March and April 2015

    图  9  2015年3和4月估算的测站C1P2 DCBr误差

    Figure  9.  Estimated Station C1P2 DCBr error in March and April 2015

    表  1  估算的2015年3月20个IGS站接收机码偏差值 (单位 ns)

    Table  1.   Calculated receiver DCB for 20 IGS stations in March 2015 (Unit ns)

    IGS站名abpoalbhalg3baiebarhbcovbjcocas1elizescu
    DCBr–4.282311.187813.27299.13916.47245.8010–12.6882–7.69002.7586–14.9059
    IGS站名eur2ganpgenogldrglpsgodzguamkirutid1wes2
    DCBr11.4201–8.695421.4204.6395–0.55360.23066.14777.1547–21.440911.0222
    下载: 导出CSV

    表  2  估算的2015年4月20个IGS站接收机码偏差值 (单位 ns)

    Table  2.   Calculated receiver DCB for 20 IGS stations in April 2015 (Unit ns)

    IGS站名abpoalbhalg3baiebarhbcovbjcocas1elizescu
    DCBr–5.059711.012213.08219.05086.26745.9221–13.2754–8.03362.7610–15.0996
    IGS站名eur2ganpgenogldrglpsgodzguamkirutid1wes2
    DCBr11.4382–8.948621.47024.9973–0.65510.15257.07487.0906–21.585811.1649
    下载: 导出CSV

    表  3  下载的2015年3和4月6个IGS站接收机码偏差值 (单位 ns)

    Table  3.   Download receiver DCBr for 6 IGS stations in March and April 2015 (Unit ns)

    IGS站名abpobjcoganpglpstid1godz
    3月P1 P2–5.628–14.647–10.175–1.804–22.974–2.234
    P1 C1–0.113–3.289–3.368–0.385–2.656–1.175
    C1 P2–5.515–11.358–6.807–1.419–20.318–1.059
    4月P1 P2–5.894–14.681–9.989–1.871–22.917–2.042
    P1 C10.180–3.363–3.4720.442–2.660–1.101
    C1 P2–6.074–11.318–6.517–2.313–20.257–0.941
    下载: 导出CSV
  • [1] LIN J, YUE X A, ZHAO S F. Estimation and analysis of GPS satellite DCB based on LEO observations[J]. GPS Solutions. 2014. DOI 10.1007/s10291-014-0433-1
    [2] YUAN L, JIN S, HOQUE M. Estimation of GPS differential code biases based on independent reference station and recursive filter[J]. Remote Sense. 2020, 12, 951. DOI.org/10.3390/rs12060951
    [3] 宋小勇, 杨志强, 焦文海, 等. GPS接收机码间偏差(DCB)的确定[J]. 大地测量与地球动力学, 2009, 29(1): 127-131

    SONG Xiaoyong, YANG Zhiqiang, JIAO Wenhai, et al. Determination of GPS receiver code bias (DCB)[J]. Geodesy and Geodynamics, 2009, 29(1): 127-131
    [4] 徐龙威, 刘晖, 舒宝, 等. GLONASS频间码偏差特性分析及其在宽巷模糊度固定中的应用[J]. 测绘学报, 2018, 47(4): 465-472 doi: 10.11947/j.AGCS.2018.20170439

    XU Longwei, LIU Hui, SHU Bao, et al. Characteristics of GLONASS inter-frequency code bias and its application on wide-lane ambiguity resolution[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 465-472 doi: 10.11947/j.AGCS.2018.20170439
    [5] WEI C, ZHANG Q, FAN L, et al. Estimate DCB of BDS satellites based on the observations of GPS/BDS[C]// China Satellite Navigation Conference (CSNC) 2014 Proceedings. Berlin: Lecture Notes in Electrical Engineering, 2014: 351-362
    [6] 张辉, 郝金明, 刘伟平, 等. 估计接收机差分码偏差的GPS/BDS非组合精密单点定位模型[J]. 武汉大学学报: 信息科学版, 2019, 44(4): 495-500,592 doi: 10.13203/j.whugis20170119

    ZHANG Hui, HAO Jinming, LIU Weiping, et al. GPS/BDS precise point positioning model with receiver DCB parameters for raw observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500,592 doi: 10.13203/j.whugis20170119
    [7] 吕志伟, 郝金明, 曾志林, 等. 利用GPS观测资料确定接收机差分码偏差的算法[J]. 全球定位系统, 2010, 35(2): 14-17

    LÜ Zhiwei, HAO Jinming, ZENG Zhilin, et al. An algorithm for determining receiver differential code error using GPS observation[J]. Global Positioning System, 2010, 35(2): 14-17
    [8] 袁云斌. 基于GPS的电离层监测及延迟改正理论与方法的研究[D]. 武汉: 中国科学测量与地球物理研究所, 2002

    YUAN Yunbin. Research on the theory and method of GPS-based ionospheric monitoring and delay correction[D]. Wuhan: Doctoral Dissertation of Chinese Institute of Scientific Surveying and Geophysics, 2002
    [9] 黄健, 汪平, 阮仁贵, 等. 基于GPS的电离层监测及延迟改正理论与方法的研究[J]. 大地测量与地球动力学, 2010, 30(3): 110-117

    HUANG Jian, WANG Ping, RUAN Rengui, et al. Research on the Theory and Method of GPS-based Ionospheric Monitoring and Delay Correction[J]. Geodesy and Geodynamics, 2010, 30(3): 110-117
    [10] 张小红, 唐龙. COSMIC低轨卫星GPS接收机差分码偏差估计[J]. 地球物理学报, 2014, 57(2): 377-383 doi: 10.6038/cjg20140204

    ZHANG Xiaohong, TANG Long. COSMIC low-orbit satellite GPS receiver differential code bias estimation[J]. Chinese Journal of Geophysics, 2014, 57(2): 377-383 doi: 10.6038/cjg20140204
    [11] SCHARE S, GURTNER W, FELRENS J. 1998. IONEX: The ionosphere map exchange format version 1[OL]. [2015-09-17]. https://gssc.esa.int/wp-content/uploads/2018/07/ionex11.pdf
    [12] ZHOU P Y, NIE Z X, YAN X, et al. Differential code bias estimation based on uncombined PPP with LEO onboard GPS observations[J]. Advances in Space Research, 2020, 65(1): 541-551 doi: 10.1016/j.asr.2019.10.005
    [13] ZHU Y, JIA X, LIANG Y. Analysis of positioning accuracy for COMPASS based on single/multi frequency pseudo-range[C]// China Satellite Navigation Conference (CSNC) 2013 Proceedings. Berlin: Lecture Notes in Electrical Engineering, 2013: 391-401
    [14] 姚宜斌, 刘磊, 孔建, 等. GIM和不同约束条件相结合的BDS差分码偏差估计[J]. 测绘学报, 2017, 46(2): 135-143 doi: 10.11947/j.AGCS.2017.20160375

    YAO Yibin, LIU Lei, KONG Jian, et al. Estimation of BDS DCB combining GIM and different zero-mean constraints[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 135-143 doi: 10.11947/j.AGCS.2017.20160375
    [15] 袁运斌, 张宝成, 李敏. 多频多模接收机差分码偏差的精密估计与特性分析[J]. 武汉大学学报: 信息科学版, 2018, 43(12): 2106-2111 doi: 10.13203/j.whugis20180135

    YUAN Yunbin, ZHANG Baocheng, LI Min. Precise estimation and characteristic analysis of Multi-GNSS receiver differential code biases[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2106-2111 doi: 10.13203/j.whugis20180135
    [16] 李征航, 黄劲松. GPS测量与数据处理[M]. 武汉: 武汉大学出版社. 2010: 92-105

    LI Zhenghang, HUANG Jinsong. GPS measurement and data processing[M]. Wuhan: Wuhan University Press, 2010: 92-105
    [17] 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.7: 80-84

    XIE Gang. GPS Principle and Receiver Design[M]. Beijing: Publishing House of Electronics Industry, 2009: 80-84
    [18] CHOI B, MIN R. Comparison of GPS receiver DCB estimation methods using a GPS network[J]. Earth Planet Space, 2013. DOI.org/10.5047/eps.2012.10.003
    [19] LINKFILED T G, TIEDJE J M. Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1[J]. Journal of Industrial Microbiology, 1990(5): 9-15 doi: 10.1007/BF01569601
    [20] 唐卫明, 刘前, 高柯夫, 等. 北斗伪距码偏差对基线解算的影响分析[J]. 武汉大学学报: 信息科学版, 2018, 43(8): 1199-1206 doi: 10.13203/j.whugis20170110

    TANG Weiming, LIU Qian, GAO Kefu, et al, SHEN Mingxing. Influence of BDS pseudorange code biases on baseline resolution[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1199-1206 doi: 10.13203/j.whugis20170110
    [21] Tabatabaei A, Mosavi M R, Khavari A, et al. Reliable urban canyon navigation solution in GPS and GLONASS integrated receiver using improved fuzzy weighted least-square method[J]. Wireless Personal Communications, 2017: 3181-3196 doi: 10.1007/s11277-016-3771-1
    [22] Gu S, Dang Y, Wang H, et al. The effect of DCB correction on multi-system combination precise point positioning[C]// China Satellite Navigation Conference (CSNC) 2019 Proceedings. Berlin: Lecture Notes in Electrical Engineering, Singapore2019: 305-313
    [23] 张强, 赵齐乐, 章红平, 等. 利用北斗观测实验网解算北斗卫星差分码偏差[J]. 武汉大学学报 : 信息科学版, 2016, 41(12): 1649-1655 doi: 10.13203/j.whugis20140640

    ZHANG Qiang, ZHAO Qile, ZHANG Hongping, et al. BDS differential code bias estimation using Beidou experimental tracking stations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1649-1655 doi: 10.13203/j.whugis20140640
    [24] ZHONG J H, LEI J H, YUE X, et al. Determination of differential code bias of GNSS receiver onboard low Earth orbit ssatellite[J]. Remote Sensing. 2016: 4896-4905. DOI: 10.1109/TGRS.2016.2552542
    [25] JIAO W H, GENG C J, MA Y H , et al. A method to estimate DCB of COMPASS satellites based on global ionosphere map[C]// China Satellite Navigation Conference (CSNC) 2012 Proceedings. Berlin: Lecture Notes in Electrical Engineering , 2012: 347-353
    [26] 楼益栋, 龚晓鹏, 辜声峰, 等. 北斗卫星伪距码偏差特性及其影响分析[J]. 武汉大学学报: 信息科学版, 2017, 42(8): 1040-1046 doi: 10.13203/j.whugis20150107

    LOU Y D, GONG X P, GU Shengfeng, et al. The characteristic and effect of code bias variations of Beidou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046 doi: 10.13203/j.whugis20150107
    [27] 梅登奎, 闻德保. MGEX北斗差分码偏差两种精确处理方法对比分析[J]. 空间科学学报, 2019, 39(5): 662-669 doi: 10.11728/cjss2019.05.662

    MEI Dengkui, WEN Debao. Comparative Analysis of Two Precise Processing Methods for MGEX BDS Differential Code Biases[J]. Chinese Journal of Space Science, 2019, 39(5): 662-669 doi: 10.11728/cjss2019.05.662
    [28] JIN R, JIN S, FENG G P, et al. Matlab code for estimating GNSS satellite and receiver differential code biases[J]. GPS Solution, 2012. DOI.org/10.1007/s10291-012-0279-3
    [29] 王宁波. GNSS差分码偏差处理方法及全球广播电离层模型研究[J]. 测绘学报, 2017, 46(8): 1069-1069 doi: 10.11947/j.AGCS.2017.20160387

    WANG Ningbo. Study on GNSS differential code biases and global broadcast ionospheric models of GPS, Galileo and BDS[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8): 1069-1069 doi: 10.11947/j.AGCS.2017.20160387
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  135
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-23
  • 录用日期:  2021-08-10
  • 修回日期:  2021-11-04
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回