留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间大气环境落球探测中的科氏力影响

范志强 盛峥 赵增亮 周育锋 张义生 江军

范志强, 盛峥, 赵增亮, 周育锋, 张义生, 江军. 临近空间大气环境落球探测中的科氏力影响[J]. 空间科学学报, 2022, 42(1): 103-116. doi: 10.11728/cjss2022.01.201203104
引用本文: 范志强, 盛峥, 赵增亮, 周育锋, 张义生, 江军. 临近空间大气环境落球探测中的科氏力影响[J]. 空间科学学报, 2022, 42(1): 103-116. doi: 10.11728/cjss2022.01.201203104
FAN Zhiqiang, SHENG Zheng, ZHAO Zengliang, ZHOU Yufeng, ZHANG Yisheng, JIANG Jun. Impact of Coriolis Force in the Falling-sphere Detection of Near-Space Atmospheric Environment (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 103-116.  DOI: 10.11728/cjss2022.01.201203104
Citation: FAN Zhiqiang, SHENG Zheng, ZHAO Zengliang, ZHOU Yufeng, ZHANG Yisheng, JIANG Jun. Impact of Coriolis Force in the Falling-sphere Detection of Near-Space Atmospheric Environment (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 103-116.  DOI: 10.11728/cjss2022.01.201203104

临近空间大气环境落球探测中的科氏力影响

doi: 10.11728/cjss2022.01.201203104
基金项目: 国家自然科学基金项目资助(41875045)
详细信息
    作者简介:

    范志强:E-mail:zqfan2016@sina.com

  • 中图分类号: P356

Impact of Coriolis Force in the Falling-sphere Detection of Near-Space Atmospheric Environment

  • 摘要:

    气象火箭落球探测技术是临近空间大气环境探测的重要方法。在落球探测数据处理过程中,通常忽略科氏力项的影响。本文利用经验预报模式构建落球探测正演仿真模型,并根据落球探测原理建立参数反演模型,在此基础上仿真模拟了落球探测数据处理过程中忽略科氏力项对大气参数反演精度的影响。在95~100 km高度范围内,忽略科氏力项将引起温度、密度、纬向风和经向风等大气参数较大反演误差,其误差特性随探测点纬度、各方向初始速度等呈现不同的变化规律,之后反演误差将随高度下降而逐渐下降。当高度下降至约70 km时科氏力项带来的影响基本可以忽略不计。研究结果表明在临近空间大气环境落球探测数据处理过程中不能忽略科氏力项的影响。本文结果对提高落球探测大气参数反演精度具有重要的参考价值。

     

  • 图  1  落球的空间三维坐标系(a)与受力分析(b)

    Figure  1.  Three-dimensional coordinate system (a) and force analysis (b) of falling-sphere

    图  2  落球探测正演仿真模型流程

    Figure  2.  Flow chart of forward simulation model for falling-sphere detection

    图  3  正演仿真模型落球飞行轨迹与真实落球飞行轨迹的对比

    Figure  3.  Comparison of the modeling flight path and the real flight path

    图  4  落球探测大气参数反演模型流程

    Figure  4.  Flow chart of inversion model of atmospheric parameters for falling-sphere detection

    图  5  落球探测大气参数反演结果与背景环境大气参数对比

    Figure  5.  Comparison of atmospheric parameters between inversion results and background environment

    图  6  大气密度廓线推导计算大气温度廓线时的误差

    Figure  6.  Error diagram of atmospheric temperature profile derived from atmospheric density profile

    图  7  科氏力项影响的计算分析流程

    Figure  7.  Calculation flow chart of Coriolis force term influence

    图  8  不同纬度条件下忽略科氏力项时的大气参数反演结果及误差廓线

    Figure  8.  Atmospheric parameter inversion results and error profiles when the Coriolis force term is ignored for different latitudes

    图  9  不同$ {v_{{x_0}}} $条件下忽略科氏力项大气参数反演结果及误差廓线

    Figure  9.  Atmospheric parameter inversion results and error profiles when the Coriolis force term is ignored for different $ {v_{{x_0}}} $

    图  10  不同$ {v_{{y_0}}} $条件下忽略科氏力项大气参数反演结果及误差廓线

    Figure  10.  Atmospheric parameter inversion results and error profiles when the Coriolis force term is ignored for different $ {v_{{y_0}}} $

    图  11  不同$ {v_{{z_0}}} $条件下忽略科氏力项大气参数反演结果及误差廓线

    Figure  11.  Fig.11 Atmospheric parameter inversion results and error profiles when the Coriolis force term is ignored for different $ {v_{{z_0}}} $

    表  1  模型验证的初始参数设置

    Table  1.   Initial parameter settings for model verifications

    球体参数坐标系原点初始位置/km初始速度/(m·s–1)
    直径/m质量/g经度纬度x0y0z0vxvyvz
    1.003275.386°E41°N48.6–1.899.3243.6–16.3307.1
    下载: 导出CSV

    表  2  初始参数设置

    Table  2.   Initial parameter schemes

    方案球体参数坐标系
    原点
    初始位置/
    km
    初始速度/
    (m·s–1)
    直径/m质量/g经度纬度x0y0z0$ {v_{{x_0}}} $$ {v_{{y_0}}} $$ {v_{{z_0}}} $
    方案一 1 300 86°E 变量 0 0 100 50 50 200
    方案二 1 300 86°E 40°N 0 0 100 变量 50 200
    方案三 1 300 86°E 40°N 0 0 100 50 变量 200
    方案四 1 300 86°E 40°N 0 0 100 50 50 变量
    下载: 导出CSV

    表  3  不同纬度条件下忽略科氏力项时的大气参数反演误差

    Table  3.   Atmospheric parameter errors when the Coriolis force term is ignored for different latitudes

    大气
    参数
    考虑
    科氏力
    纬度/(°)N高度/
    km
    020406080
    温度
    误差/
    K
    0.07 0.07 0.07 0.07 0.08 0.08 30
    –1.02 –1.17 –1.16 –1.14 –1.10 –1.05 70
    –0.64 –3.30 –3.14 –2.67 –1.99 –1.20 85
    0.65 –6.56 –6.19 –5.13 –3.34 –0.83 95
    密度
    误差/
    (%)
    0.29 0.21 0.21 0.22 0.23 0.24 30
    –0.14 –0.20 –0.20 –0.19 –0.18 –0.16 70
    –0.43 –0.35 –0.36 –0.38 –0.41 –0.43 85
    –0.66 –1.82 –1.71 –1.42 –1.09 –0.88 95
    纬向风
    误差/
    (m·s–1)
    0.00 –0.02 –0.01 –0.01 –0.01 0.00 30
    –0.01 –1.52 –1.41 –1.12 –0.70 –0.20 70
    –0.04 –12.71 –11.59 –9.07 –5.46 –1.21 85
    –0.09 –47.70 –42.63 –32.40 –18.32 –2.18 95
    经向风
    误差/
    (m·s–1)
    0.00 0.00 0.00 –0.01 –0.01 –0.01 30
    –0.02 –0.03 –0.08 –0.12 –0.16 –0.18 70
    –0.07 –0.18 –0.56 –0.88 –1.11 –1.22 85
    –0.10 –1.41 –3.47 –5.13 –6.18 –6.49 95
    下载: 导出CSV

    表  4  不同 $ {v_{{x_0}}} $ 条件下忽略科氏力项时的大气参数反演误差

    Table  4.   Atmospheric parameter errors when the Coriolis force term is ignored for different $ {v_{{x_0}}} $

    大气
    参数
    考虑
    科氏力
    $ {v_{{x_0}}} $/(m·s–1)高度/
    km
    050100150
    温度
    误差/
    K
    0.12 0.12 0.07 0.03 –0.01 30
    –1.01 –0.99 –1.14 –1.28 –1.43 70
    –0.66 –0.65 –2.67 –4.47 –6.42 85
    0.64 –0.18 –5.13 –6.66 –10.64 95
    密度
    误差/
    (%)
    0.16 0.16 0.22 0.28 0.33 30
    –0.16 –0.14 –0.19 –0.24 –0.29 70
    –0.45 –0.32 –0.38 –0.49 –0.59 85
    –0.72 –0.46 –1.42 –3.64 –5.87 95
    纬向风
    误差/
    (m·s–1)
    0.00 –0.01 –0.01 –0.01 –0.01 30
    0.02 –1.09 –1.12 –1.15 –1.19 70
    0.00 –8.99 –9.07 –9.24 –9.50 85
    –0.05 –31.48 –32.40 –34.39 –37.39 95
    经向风
    误差/
    (m·s–1)
    0.00 –0.01 –0.01 –0.01 –0.01 30
    –0.02 –0.07 –0.12 –0.18 –0.23 70
    –0.07 –0.09 –0.88 –1.66 –2.42 85
    –0.10 –0.05 –5.13 –10.23 –15.23 95
    下载: 导出CSV

    表  5  不同$ {v_{{y_0}}} $条件下忽略科氏力项时的大气参数反演误差

    Table  5.   Atmospheric parameter errors when the Coriolis force term is ignored for different $ {v_{{y_0}}} $

    大气
    参数
    考虑
    科氏力
    $ {v_{{y_0}}} $/(m·s–1)高度/
    km
    050100150
    温度
    误差/
    K
    0.09 0.09 0.07 0.06 0.05 30
    –1.02 –1.14 –1.14 –1.13 –1.14 70
    –0.66 –2.77 –2.67 –2.50 –2.55 85
    0.64 –6.17 –5.13 –3.63 –3.52 95
    密度
    误差/
    (%)
    0.26 0.20 0.22 0.24 0.25 30
    –0.14 –0.19 –0.19 –0.19 –0.19 70
    –0.43 –0.36 –0.38 –0.41 –0.44 85
    –0.70 –1.09 –1.42 –1.85 –2.29 95
    纬向风
    误差/
    (m·s–1)
    0.00 –0.01 –0.01 –0.01 –0.01 30
    –0.01 –1.18 –1.12 –1.06 –1.00 70
    –0.04 –9.80 –9.07 –8.30 –7.51 85
    –0.11 –36.78 –32.40 –27.87 –23.29 95
    经向风
    误差/
    (m·s–1)
    0.00 –0.01 –0.01 –0.01 –0.01 30
    0.01 –0.09 –0.12 –0.15 –0.18 70
    –0.03 –0.76 –0.88 –0.98 –1.09 85
    –0.04 –4.45 –5.13 –5.76 –6.32 95
    下载: 导出CSV

    表  6  不同$ {v_{{z_0}}} $条件下忽略科氏力项时的大气参数反演误差

    Table  6.   Atmospheric parameter errors when the Coriolis force term is ignored for different $ {v_{{z_0}}} $

    大气
    参数
    考虑
    科氏力
    $ {v_{{z_0}}} $/(m·s–1)高度/
    km
    50100150200
    温度
    误差/
    K
    0.06 0.06 0.07 0.07 0.07 30
    –1.01 –1.12 –1.15 –1.15 –1.14 70
    –0.74 –2.86 –3.58 –3.21 –2.67 85
    0.07 –17.00 –16.40 –10.26 –5.13 95
    密度
    误差/
    (%)
    0.29 0.23 0.23 0.22 0.22 30
    –0.16 –0.21 –0.21 –0.20 –0.19 70
    –0.40 –0.28 –0.25 –0.31 –0.38 85
    –0.42 5.51 3.00 0.28 –1.42 95
    纬向风
    误差/
    (m·s–1)
    0.00 –0.01 –0.01 –0.01 –0.01 30
    –0.01 –1.14 –1.14 –1.13 –1.12 70
    –0.03 –8.86 –8.91 –8.98 –9.07 85
    –0.10 –28.98 –29.77 –30.96 –32.40 95
    经向风
    误差/
    (m·s–1)
    0.00 –0.01 –0.01 –0.01 –0.01 30
    –0.02 –0.13 –0.13 –0.13 –0.12 70
    –0.07 –0.91 –0.90 –0.89 –0.88 85
    –0.12 –5.65 –5.53 –5.36 –5.13 95
    下载: 导出CSV
  • [1] WAN Mingjie. Ten major threats to national aerospace defense[J]. National Defense Technology, 2019, 40(5): 1-5
    [2] LV Daren, CHEN Zeyu, GUO Xia, et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 2009, 39(6): 674-682 doi: 10.3321/j.issn:1000-0992.2009.06.008
    [3] 朱家佳, 米琳, 李晓辉, 等. 临近空间科学探测数据的共享与实践[J]. 空间科学学报, 2021, 41(5): 828-835

    ZHU Jiajia, MI Lin, LI Xiaohui, et al. Near space scientific exploratory data sharing research and practice[J]. Chinese Journal of Space Science, 2021, 41(5): 828-835
    [4] 郜颖哲, 刘晓, 徐寄遥. 基于激光雷达夜间观测提取重力波方法的定量比较[J]. 空间科学学报, 2021, 41(4): 597-608

    GAO Yingzhe, LIU Xiao, XU Jiyao. Quantitative estimations on the gravity wave extraction methods from night-time Lidar observation[J]. Chinese Journal of Space Science, 2021, 41(4): 597-608
    [5] 杨钧烽, 肖存英, 胡雄, 等. 中国廊坊中间层和低热层大气平均风观测模拟[J]. 空间科学学报, 2017, 37(3): 284-290 doi: 10.11728/cjss2017.03.284

    YANG Junfeng, XIAO Cunying, HU Xiong, et al. Observations and simulations of the mean winds in mesosphere and lower thermosphere over Langfang of China[J]. Chinese Journal of Space Science, 2017, 37(3): 284-290 doi: 10.11728/cjss2017.03.284
    [6] 谢衍新, 肖存英, 胡雄, 等. TIMED/SABER与AURA/MLS临近空间探测温度数据比较[J]. 空间科学学报, 2018, 38(3): 361-367 doi: 10.11728/cjss2018.03.361

    XIE Yanxin, XIAO Cunying, HU Xiong, et al. Comparison between temperature data of TIMED/SABER and AURA/MLS[J]. Chinese Journal of Space Science, 2018, 38(3): 361-367 doi: 10.11728/cjss2018.03.361
    [7] 杜晓勇, 杜智涛, 郭粤宁, 等. 利用掩星温度数据推算大气月平均纬向风场[J]. 空间科学学报, 2020, 40(6): 1030-1038 doi: 10.11728/cjss2020.06.1030

    DU Xiaoyong, DU Zhitao, GUO Yuening, et al. Research of monthly zonal winds derived from radio occultation temperature data[J]. Chinese Journal of Space Science, 2020, 40(6): 1030-1038 doi: 10.11728/cjss2020.06.1030
    [8] SHENG Zheng, ZHOU Shudao, GE Wei, et al. Gravity wave in near space by falling-sphere detection[J]. Equipment Environmental Engineering, 2019, 16(6): 21-24
    [9] BARTMAN F L, CHANEY L W, JONES L M, et al. Upper-air density and temperature by the falling-sphere method[J]. Journal of Applied Physics, 1956, 27(7): 706-712 doi: 10.1063/1.1722470
    [10] OTTERMAN J, SATTINGER I J, SMITH D F. Analysis of a falling-sphere experiment for measurement of upper-atmosphere density and wind velocity[J]. Journal of Geophysical Research, 1961, 66(3): 819-822 doi: 10.1029/JZ066i003p00819
    [11] FAUCHER G A, PROCUNIER R W, SHERMAN F S. Upper-atmosphere density obtained from measurements of drag on a falling sphere[J]. Journal of Geophysical Research, 1963, 68(11): 3437-3450 doi: 10.1029/JZ068i011p03437
    [12] LÜBKEN F J, HILLERT W, LEHMACHER G, et al. Intercomparison of density and temperature profiles obtained by Lidar, ionization gauges, falling spheres, datasondes and radiosondes during the DYANA campaign[J]. Journal of Atmospheric and Terrestrial Physics, 1994, 56(13/14): 1969-1984
    [13] SCHMIDLIN F J, LEE H S, MICHEL W. The inflatable sphere: a technique for the accurate measurement of middle atmosphere temperatures[J]. Journal of Geophysical Research:Atmospheres, 1991, 96(D12): 22673-22682 doi: 10.1029/91JD02395
    [14] BORDOGNA M T, FIDJELAND L, FJÄLLID M, et al. MUSCAT experiment: active free falling units for in situ measurements of temperature and density in the middle atmosphere[C]//Proc. 21 st ESA Symposium European Rocket & Balloon Programmes and Related Research. Thun, Swizerland: ESA, 2013, 350: 575-582
    [15] JIANG Xiujie, LIU Bo, YU Shiqiang, et al. Development status and trend of sounding rocket[J]. Science & Technology Review, 2009, 27(23): 101-110 doi: 10.3321/j.issn:1000-7857.2009.23.021
    [16] SHI Dongbo, HU Xiong, TU Cui, et al. Near space environment detection technology- sounding rocket falling sphere[J]. Equipment Environmental Engineering, 2018, 15(7): 89-92
    [17] GE W, SHENG Z, ZHANG Y Y, et al. The study of in situ wind and gravity wave determination by the first passive falling-sphere experiment in China's northwest region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182: 130-137 doi: 10.1016/j.jastp.2018.11.015
    [18] China Meteorological Administration Climate Monitoring Application Management Division. Guide to Meteorological Instruments and Methods of Observation (5 ed. )[M]. Beijing: Meteorological Press, 1992
    [19] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1468
    [20] DROB D P, EMMERT J T, CROWLEY G, et al. An empirical model of the Earth’s horizontal wind fields: HWM07[J]. Journal of Geophysical Research:Space Physics, 2008, 113(A12): A12304
    [21] HENDERSON C B. Drag coefficients of spheres in continuum and rarefied flows[J]. AIAA Journal, 1976, 14(6): 707-708 doi: 10.2514/3.61409
    [22] SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmospheric Physics[M]. 2 nd ed. Beijing: Peking University Press, 2013
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  153
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 录用日期:  2022-01-06
  • 修回日期:  2021-09-03
  • 网络出版日期:  2022-05-25

目录

    /

    返回文章
    返回