留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.5维自适应磁场重联MHD模式

张绍华 冯学尚 杨利平

张绍华, 冯学尚, 杨利平. 2.5维自适应磁场重联MHD模式[J]. 空间科学学报, 2012, 32(6): 785-792. doi: 10.11728/cjss2012.06.785
引用本文: 张绍华, 冯学尚, 杨利平. 2.5维自适应磁场重联MHD模式[J]. 空间科学学报, 2012, 32(6): 785-792. doi: 10.11728/cjss2012.06.785
ZHANG Shaohua, FENG Xueshang, YANG Liping. 2.5D AMR MHD Magnetic Reconnection Model[J]. Journal of Space Science, 2012, 32(6): 785-792. doi: 10.11728/cjss2012.06.785
Citation: ZHANG Shaohua, FENG Xueshang, YANG Liping. 2.5D AMR MHD Magnetic Reconnection Model[J]. Journal of Space Science, 2012, 32(6): 785-792. doi: 10.11728/cjss2012.06.785

2.5维自适应磁场重联MHD模式

doi: 10.11728/cjss2012.06.785
基金项目: 国家自然科学基金项目(41031066, 40921063, 40874091, 40890162, 41074122)和空间天气学国家重点实验室专项基金共同资助
详细信息
  • 中图分类号: P353

2.5D AMR MHD Magnetic Reconnection Model

  • 摘要: 磁雷诺数(Rm)是影响磁场重联的重要因素. 真实的物理环境中Rm往往很高, 例如, 在行星际空间和太阳日冕中Rm通常大于104量级. 高Rm条件下的磁重联表现出很多异常特性, 然而高Rm条件下的磁场重联数值模拟需要很高的时空分辨率, 否则很难分辨出重联过程中形成的薄电流片. 本文基于自适应软件包PARAMESH将并行自适应网格技术引入磁场重联数值模拟, 建立了一个2.5维自适应磁场重联MHD模式, 研究高磁雷诺数条件下重联的动态演化过程, 进而将不同磁雷诺数的参数进行对比研究. 结果表明, 该模式可以自动捕捉到磁场重联产生的奇性电流片, 高磁雷诺数条件下产生的慢激波结构可提供一种快速磁能释放机制.

     

  • [1] Aschwanden M J. Particle acceleration and kinematics in solar flares-A synthesis of recent observations and theoretical concepts[J]. Space Sci. Rev., 2002, 101:1-227
    [2] Birn J, Priest E R. Magnetohydrodynamics and Collisionless Theory and Observations[M]. Cambridge: Cambridge University Press, 2006
    [3] Wei Fengsi, Schwenn R, Hu Qiang. Magnetic reconnection events in the interplanetary space[J]. Sci. China E: Tech. Sci., 1997, 40:463-471
    [4] Wei Fengsi, Hu Qiang, Feng Xueshang, Fan Quanlin. Magnetic reconnection phenomena in interplanetary space[J]. Space Sci. Rev., 2003, 107:107-110
    [5] Ugai M. Basic physical mechanism of fast reconnection evolution in space plasmas[J]. Space Sci. Rev., 2001, 95:601-611
    [6] Litvinenko Y E. Particle acceleration in reconnecting current sheets in impulsive electron-rich solar flares[J]. Solar Phys., 2000, 194:327-343
    [7] Litvinenko Y E. Electron acceleration in solar flares[J]. Adv. Space Res., 2003, 32:2385-2391
    [8] Gordovskyy M, Browning P K, Vekstein G E. Particle acceleration in fragmenting periodic reconnecting current sheets in solar flares[J]. Astrophys. J., 2010, 720:1603-1611
    [9] Fu X R, Lu Q M, Wang S. The process of electron acceleration during collisionless magnetic reconnection[J]. Phys. Plasmas, 2006, 13:1-8
    [10] Huang C, Lu Q M, Wang S. The mechanisms of electron acceleration in antiparallel and guide field magnetic reconnection[J]. Phys. Plasmas, 2010, 17:1-8
    [11] Priest E R, Forbes T G. The magnetic nature of solar flares[J]. Astron. Astrophys. Rev., 2002, 10:313-377
    [12] Cassak P A, Shay M A. Magnetic reconnection for coronal conditions: reconnection rates, secondary islands and onset[J]. Space Sci. Rev., 2011, 11:1-20
    [13] Wei Fengsi, Hu Qiang, Feng Xueshang. Numerical study of magnetic reconnection process near interplanetary current sheet[J]. Chin. Sci. Bull., 2001, 46:111-117
    [14] Barta M, Buchner J, Karlicky M. Multi-scale MHD approach to the current sheet filamentation in solar coronal reconnection[J]. Adv. Space Res., 2010, 45:10-17
    [15] Berger M J, Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations[J]. J. Comput. Phys., 1984, 53:484-512
    [16] Barta M, Buchner J, Karlicky M. Spontaneous current-layer fragmentation and cascading reconnection in solar flares: II Relation to observations[J]. Astrophys. J., 2011, 47:1-6
    [17] Loureiro N F, Schekochihin A A, Cowley S C. Instability of current sheets and formation of plasmoid chains[J]. Phys. Plasmas, 2007, 14:100703-100707
    [18] Samtaney R, Loureiro N F, Uzdensky D A, Schekochihin A A, Cowley S C. Formation of plasmoid chains in magnetic reconnection[J]. Phys. Rev. Lett., 2009, 103:1-4
    [19] Huang Y M, Bhattacharjee A. Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime[J]. Phys. Plasmas, 2010, 17:062104-062111
    [20] Wang R S, Du A M, Wang S. In-situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons[J]. Phys. Rev. Lett., 2010, 104:1-4
    [21] Li Xing, Huang C. Observations of energetic electrons up to 200keV associated with a secondary island near the center of an ion diffusion region: A Cluster case study[J]. J. Geophys. Res., 2010, 115:1-10
    [22] Kurganov A, Noelle S, Petrova G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton-jacobi equations[J]. SIAM J. Sci. Comput., 2001, 23:707-740
    [23] Ziegler U. A central-constrained transport scheme for ideal magnetohydrodunamics[J]. J. Comput. phys., 2004, 196:393-416
    [24] Toth G. The abla · ±b B = 0 constraint in shock-capturing magnetohydrodynamics codes[J]. J. Comput. Phys., 2000, 161:605-652
    [25] Wang Y, Wei F S, Feng X S, Zhang S H, Zuo P B, Sun T R. Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer[J]. Phys. Rev. Lett., 2010, 105:1-4
    [26] Birn J, Drake J F, Shay M A. Geospace Environmental Modeling (GEM) magnetic reconnection challenge[J]. J. Geophys. Res., 2001, 106:3715-3720
    [27] Loureiro N F, Cowley S C, Dorland W D, Haines M G, Schekochihin A A. X-point collapse and saturation in the nonlinear tearing mode reconnection [J]. Phys. Rev. Lett., 2005, 95:1-4
    [28] Oka M, Phan T D, Krucker S, Fujimoto M, Shinohara I. Electron acceleration by multi-Island coalescence[J]. Astrophys. J., 2010, 714:915-926
  • 加载中
计量
  • 文章访问数:  2623
  • HTML全文浏览量:  13
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-26
  • 修回日期:  2012-05-03
  • 刊出日期:  2012-11-15

目录

    /

    返回文章
    返回