留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁暴对赤道地区L波段电离层闪烁的影响研究

杨升高 方涵先 李刚 牛俊 王凯

杨升高, 方涵先, 李刚, 牛俊, 王凯. 磁暴对赤道地区L波段电离层闪烁的影响研究[J]. 空间科学学报, 2012, 32(6): 812-817. doi: 10.11728/cjss2012.06.812
引用本文: 杨升高, 方涵先, 李刚, 牛俊, 王凯. 磁暴对赤道地区L波段电离层闪烁的影响研究[J]. 空间科学学报, 2012, 32(6): 812-817. doi: 10.11728/cjss2012.06.812
YANG Shenggao, FANG Hanxian, LI Gang, NIU Jun, WANG Kai. Impact of Geomagnetic Storms on L-band Ionospheric Scintillation Over Equatorial Region[J]. Journal of Space Science, 2012, 32(6): 812-817. doi: 10.11728/cjss2012.06.812
Citation: YANG Shenggao, FANG Hanxian, LI Gang, NIU Jun, WANG Kai. Impact of Geomagnetic Storms on L-band Ionospheric Scintillation Over Equatorial Region[J]. Journal of Space Science, 2012, 32(6): 812-817. doi: 10.11728/cjss2012.06.812

磁暴对赤道地区L波段电离层闪烁的影响研究

doi: 10.11728/cjss2012.06.812
基金项目: 国家自然科学基金项目(40505005)和解放军理工大学 气象学院基础理论基金项目共同资助
详细信息
  • 中图分类号: P353

Impact of Geomagnetic Storms on L-band Ionospheric Scintillation Over Equatorial Region

  • 摘要: 利用赤道地区Vamimo站闪烁数据, 选取两次典型大磁暴时段重点分析, 对比磁暴发生前、发生时以及发生后连续几天电离层幅度闪烁强度和发生率的变化, 引入瑞利elax-elax泰勒不稳定性(Rayleigh-Taylor, R-T不稳定性)线性增长率γ0, 对磁暴影响闪烁的机制进行初步探讨. 结果表明, 磁暴可能触发闪烁发生, 也可能抑制闪烁发生, 这既与观测季节有关, 也与磁暴不同发展阶段的地方时有关. 触发发生于闪烁少发季节磁暴主相所在的午夜至黎明时段, 可能是磁层穿透电离层的东向电场所致; 抑制发生于闪烁多发季节磁暴恢复相所在的午夜前时段, 可能是西向电场作用的结果. 磁暴发生时的电场变化可能是抑制或触发闪烁的主导因素, 但仍需进一步分析研究.

     

  • [1] Yeh K C. Radio wave scintillations in the ionosphere[J]. Proc. IEEE, 1982, 70(4):324-360
    [2] Aarons J. 50 years of radio-scintillation observations[J]. Aaten. Prop. Mag., 1997, 39(6):7-12
    [3] Kelley M C. The Earth's ionosphere: Plasma physics and electrodynamics (International Geophysics Series)[J]. San Diego, CA: 43 Academic Press, 1989
    [4] Fejer B G. Ionospheric irregularities[J]. J. Geophys. Res., 1997, 102:24047-24056
    [5] Shang Sheping, Shi Jiankui, Guo Shanjian, et al. Morphological study of L-band ionospheric scintillation in the equatorial region[J]. Chin. J. Radio Sci., 2006, 21(3):410-415
    [6] Zhu Taiping, Long Qili. Radio scintillations and spread-F at low-latitudes[J]. Chin. J. Radio Sci., 1995, 10(3):410-415
    [7] Shang Sheping, Shi Jiankui, Guo Shanjian, et al. Ionospheric scintillation monitoring and preliminary statistic analysis over Hainan region[J]. Chin. J. Space Sci., 2005, 25(1):23-28
    [8] Biktash L Z. The equatorial scintillation and space weather effects on its generation during geomagetic storms[C]//11th International Conference on Ionospheric Radio Systems and Techniques, Edinburgh, UK, 2009
    [9] Xu Jisheng, Zhu Jie, Cheng Guanghui. GPS observations of ionospheric effects of the major storm of Nov.7-10, 2004[J]. Chin. J. Geophys., 2006, 49(4):950-956
    [10] Luo Weihua, Xu Jisheng, Xu Liang. Analysis of controlling factors leading to the development of R-T instablity in equatorial ionosphere[J]. Chin. J. Geophys., 2009, 52(1):849-858
    [11] Aarons J, Dasgupta A. Equatorial scintillations during the major magnetic storm of April 1981 [J]. Radio Sci., 1984, 731-739
    [12] Basu S, Groves K M, et al. Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000[J]. Geophys. Res., 2000, 28(18):3577-3580
    [13] Kumar S, Gwal A K. VHF ionospheric scintillation equatorial anomaly crest: solar and magnetic activity[J]. J. Atmos. Solar-Terr. Phys., 2000, 62(3):157-167
    [14] Basu S. Ionospheric effects of major magnetic storm during the international space weather period of September and Octber 1999: GPS observations, VHF/UHF scintillation, and in situ density structures at middle and equatorial latitudes[J]. J. Geophys. Res., 2001, 106(A12):30389-30413
    [15] Chandra H, Vyas G D, Pathan B M, et al. Spectral characteristics of magnetic storm-induced F-region scintillations extending into daytime[J]. J. Atmos. Terr. Phys., 1995, 57(11):1273-1285
    [16] Li G Z, Ning B Q. Effects of geomagnetic storm on GPS ionospheric scintillations at Sanya[J]. J. Atmos. Solar Terr. Phys., 2008, 70:1034-1045
    [17] Aarons J. The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storm[J]. Radio Sci., 1991, 26(4):1131-1139.
    [18] Zou Y. Effects of the 4-20 April 2006 major geomagnetic storms on GPS ionospheric scintillations at Guilin[C]// 2009 3rd International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. IEEE, 2009
    [19] Shang S P. Response of Hainan GPS ionospheric scintillation to the different strong magnetic storm condition[J]. Adv. Space Res., 2008, 41(4):579-586
    [20] LI G Z, Ning B Q. Observations of GPS ionospheric scintillations over Wuhan during geomagnetic storms[J]. Ann. Geophys., 2006, 24:1581-1590
    [21] Bhattacharya S, Purohit P K, Tiwari R, et al. Study of GPS based ionospheric scintillation and its effects on dual frequency receiver[J]. J. Eng. Sci. Manag. Educ., 2010(1):55-61
    [22] Jiao Weixin. Scinence of Space Weather[M]. Beijing: China Meteorological Press, 2003. 90-100
    [23] Sultan P J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F[J]. J. Geophys. Res., 1996, 101(A12):26875-26891
    [24] Basu S. On the linear theory of equatorial study of the wind field effect on the growth and observations[J]. J. Geophys. Res., 2002, 107(A8):1199-1208
    [25] Rezende de L F C, Paula de E R, et al. Study of ionospheric irregularities during intense magnetic storms[J]. Braz. J. Geophys., 2007, 25(2):152-158
  • 加载中
计量
  • 文章访问数:  2735
  • HTML全文浏览量:  5
  • PDF下载量:  1351
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-27
  • 修回日期:  2012-03-08
  • 刊出日期:  2012-11-15

目录

    /

    返回文章
    返回