留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形液池热毛细对流的线性稳定性研究

陈启生 何蒙 胡开鑫

陈启生, 何蒙, 胡开鑫. 环形液池热毛细对流的线性稳定性研究[J]. 空间科学学报, 2016, 36(4): 476-480. doi: 10.11728/cjss2016.04.476
引用本文: 陈启生, 何蒙, 胡开鑫. 环形液池热毛细对流的线性稳定性研究[J]. 空间科学学报, 2016, 36(4): 476-480. doi: 10.11728/cjss2016.04.476
CHEN Qisheng, HE Meng, HU Kaixin. Linear Stability Analysis of Thermocapillary Convection in Annular Pools[J]. Journal of Space Science, 2016, 36(4): 476-480. doi: 10.11728/cjss2016.04.476
Citation: CHEN Qisheng, HE Meng, HU Kaixin. Linear Stability Analysis of Thermocapillary Convection in Annular Pools[J]. Journal of Space Science, 2016, 36(4): 476-480. doi: 10.11728/cjss2016.04.476

环形液池热毛细对流的线性稳定性研究

doi: 10.11728/cjss2016.04.476
基金项目: 国家自然科学基金项目资助(11272320,11532015)
详细信息
    作者简介:

    陈启生,qschen@imech.ac.cn

  • 中图分类号: V524

Linear Stability Analysis of Thermocapillary Convection in Annular Pools

  • 摘要: 对外壁加热的环形液池热毛细对流进行了线性稳定性分析.采用Chebyshev配点法对Pr=6.8、内外径之比为0.5、深宽比A范围为0.25~1.4的数值结果进行分析,发现流动的临界状态均为振荡形式,并且随着A的增大,临界雷诺数减小,相应的临界波数与振荡频率也呈减小趋势.能量分析结果表明,小扰动与基本流相互作用项较小,表面张力在径向做功与周向做功对小扰动的动能变化起主导作用.观察三者与液池深宽比的关系,发现A=0.8时表面张力在径向做功项达到极小值,周向做功项以及小扰动与基本流相互作用项达到极大值.

     

  • [1] DERBY J J, KWON Y I, PANDY A, et al. Developing quan-titative, multiscale models for microgravity crystal growth[J]. Ann. N. Y. Acad. Sci., 2006, 1077(1):124-145
    [2] SMITH M K, DAVIS S H. Instabilities of dynamic thermocapillary liquid layers Part 1. convective instabilities[J]. J. Fluid Mech., 1983, 132:119-144
    [3] SCHATZ M F, NEITZEL G P. Experiments on thermocapillary instabilities[J]. Ann. Rev. Fluid Mech., 2001, 33(1):93-127
    [4] KAMOTANI Y. Thermocapillary flow under micro-gravity-experimental results[J]. Adv. Space Res., 1999, 24(10):13571366
    [5] KAMOTANI Y, OSTRACH S. MASUD J. Microgravity experiments and analysis of oscillatory thermocapillary flow in cylindrical containers[J]. J. Fluid Mech., 2000, 410:211-233
    [6] MUKOLOBWIEZ N, CHIFFAUDEL A, DAVIAUD F. Supercritical Eckhaus instability for surface-tension-driven hydrothermal waves[J]. Phys. Rev. Lett., 1998, 80(21): 4661
    [7] GARNIER N, CHIFFAUDEL A. Two dimensional hydrothermal waves in an extended cylindrical vessel[J]. Eur. Phys. J.: B, 2001, 19(1):87-95
    [8] BENZ S, SCHWABE D. The three-dimensional stationary instability in dynamic thermocapillary shallow cavities[J]. Exp. Fluids, 2001, 31(4):409-416
    [9] SCHWABE D, BENZ S. Thermocapillary flow instabilities in an annulus under microgravity-results of the experiment MAGIA[J]. Adv. Space Res., 2002, 29(4):629-638
    [10] SCHWABE D, ZEBIB A, SIM B C. Oscillatory thermocapillary convection in open cylindrical annuli Part 1. Experiments under microgravity[J]. J. Fluid Mech., 2003, 491:239-258
    [11] SIM B C, ZEBIB A, SCHWABE D. Oscillatory thermocapillary convection in open cylindrical annuli Part2. Simulations[J]. J. Fluid Mech., 2003, 491:259-274
    [12] LI Yourong, PENG Lan, AKIYAMA Y, et al. Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool[J]. J. Cryst. Growth, 2003, 259(4):374-387
    [13] LI Yourong, IMAISHI N, AZAMIC T, et al. Three-dimensional oscillatory flow in a thin annular pool of silicon melt[J]. J. Cryst. Growth, 2004, 260(1):28-42
    [14] SHI Wanyuan, IMAISHI N. Hydrothermal waves in differentially heated shallow annular pools of silicone oil[J]. J. Cryst. Growth, 2006, 290(1):280-291
    [15] PENG Lan, LI Yourong, SHI Wanyuan, et al. Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool[J]. Int. J. Heat Mass Trans., 2007, 50(5):872-880
    [16] SCHWABE D. Buoyant-thermocapillary and pure thermocapillary convective instabilities in Czochralski sys-tems[J]. J. Cryst. Growth, 2002, 237-239:1849-1853
    [17] SHI Wanyuan, ERMAKOVC M K, IMAISHI N. Effect of pool rotation on thermocapillary convection in shallow annular pool of silicone oil[J]. J. Cryst. Growth, 2006, 294(2):474-485
    [18] SHI Wanyuan, IMAISHI N. Hydrothermal waves in rotating annular pools of silicon melt[J]. Microg. Sci. Technol., 2007, 19(3):159-160
    [19] SHI Wanyuan, IMAISHI N. Thermocapillary convection in a shallow annular pool heated from inner wall[J]. Microgravity Sci. Technol., 2007, 19(3):104-105
    [20] SHI Wanyuan, LI Yourong, ERMAKOV M K, et al. Stability of thermocapillary convection in rotating shallow annular pool of silicon melt[J]. Microgravity Sci. Technol., 2010, 22(3):315-320
    [21] LAVALLEY R, AMBERG G, ALFREDSSON H. Experimental and numerical investigation of nonlinear thermocapillary oscillations in an annular geometry[J]. Eur. J. Mech.: B Fluids, 2001, 20(6):771-797
    [22] LI Yourong, LIU Yushan, SHI Wanyuan, et al. Stability of thermocapillary convection in annular pools with low Prandtl number fluid[J]. Microgravity. Sci. Technol., 2009, 21(1):283-287
    [23] SHI Wanyuan, ERMAKOV M K, LI Yourong, et al. Influence of buoyancy force on thermocapillary convection instability in the differentially heated annular pools of silicon melt[J]. Microgravity. Sci. Technol., 2009, 21(1):289-297
    [24] SHI Wanyuan, LIU Xi, LI Guoyuan, et al. Thermoca-pillary convection instability in shallow annular pools by linear stability analysis[J]. J. Supercond. Novel Magn., 2010, 23(6):1185-1188
    [25] SHI Wanyuan, LI Yourong, ERMAKOV M K, et al. Linear stability analysis of thermocapillary convection in the annular pools of silicone oil[J]. J. Eng. Thermophys., 2008, 29(7):1218-1220(石万元, 李友荣, ERMAKOV M K, 等. 环形液层内热毛细对流的线性稳定性分析[J]. 工程热物理学报, 2008, 29(7):1218-1220)
  • 加载中
计量
  • 文章访问数:  887
  • HTML全文浏览量:  15
  • PDF下载量:  41645
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-05-09
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回